HPE NIMBLE STORAGE DHCI AND VMWARE VSPHERE DEPLOYMENT GUIDE

New HPE Nimble Storage dHCI array with existing servers and vSphere clusters deployment
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clone a VMFS datastore</td>
<td>19</td>
</tr>
<tr>
<td>Create a snapshot of a VMFS datastore</td>
<td>20</td>
</tr>
<tr>
<td>Create a vVol datastore</td>
<td>20</td>
</tr>
<tr>
<td>Using HPE InfoSight with HPE Nimble Storage dHCI</td>
<td>21</td>
</tr>
<tr>
<td>Create an HPE Passport account</td>
<td>21</td>
</tr>
<tr>
<td>Register your HPE Nimble Storage assets</td>
<td>21</td>
</tr>
<tr>
<td>Enable streaming for HPE InfoSight and Cross-Stack Analytics</td>
<td>21</td>
</tr>
<tr>
<td>HPE Nimble Storage dHCI Overview Dashboard</td>
<td>22</td>
</tr>
<tr>
<td>HPE Nimble Storage dHCI Cluster Dashboard</td>
<td>22</td>
</tr>
<tr>
<td>Appendix A: Configuration worksheets</td>
<td>23</td>
</tr>
<tr>
<td>Appendix B: Resources for automation</td>
<td>25</td>
</tr>
<tr>
<td>Appendix C: Switch configuration examples</td>
<td>26</td>
</tr>
<tr>
<td>HPE M-Series configuration example</td>
<td>26</td>
</tr>
<tr>
<td>HPE Aruba 8320 or 8325 configuration example</td>
<td>33</td>
</tr>
<tr>
<td>HPE Aruba 6300 configuration example</td>
<td>42</td>
</tr>
<tr>
<td>HPE FlexFabric configuration example</td>
<td>49</td>
</tr>
<tr>
<td>Cisco Nexus configuration example</td>
<td>57</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

The HPE Nimble Storage dHCI solution from Hewlett Packard Enterprise is a disaggregated hyperconverged infrastructure (HCI) platform that delivers the flexibility of converged infrastructure and the simplicity of HCI. This scalable solution is designed, tested, and documented to address the business requirements, workloads, and applications of Hewlett Packard Enterprise customers. The solution incorporates a wide range of products into a portfolio of repeatable, scalable, and composable technologies that are supported by Hewlett Packard Enterprise.

This guide describes how the HPE Nimble Storage dHCI solution combines industry-leading HPE ProLiant servers with HPE Nimble Storage arrays and Hewlett Packard Enterprise and Cisco switches to reliably deploy and run a VMware vSphere® environment. Customers can leverage this solution to support a wide variety of enterprise workloads:

- Datacenter server consolidation and cloud solutions
- Business-critical applications, such as Oracle, Microsoft®, and SAP® databases and applications
- Workforce-enablement applications, such as virtual desktop infrastructure (VDI), Microsoft Exchange Server, SharePoint Server, and Lync® Server

The solution is robust, fault-tolerant, and scalable, and it is designed to deliver high performance and high availability. Extensive lab testing was conducted to validate that it meets those criteria. Customers can purchase and deploy their specified configuration with confidence in the quality of both the solution and the support they will receive from Hewlett Packard Enterprise.

The solution is intended for small or midsize businesses, large enterprises, and IT service providers who are looking for, and who understand the value of, the combination of consolidation, efficiency, and consistency that it offers.

The configuration covered in this deployment guide includes the following components:

- **Storage:** New HPE Nimble Storage all-flash or adaptive flash storage (for iSCSI only)
- **Computing resources:** Existing HPE ProLiant servers in one of the following models:
 - HPE ProLiant DL380 Gen10
 - HPE ProLiant DL360 Gen10
 - HPE ProLiant DL325 Gen10
 - HPE ProLiant DL325 Gen10 Plus
 - HPE ProLiant DL385 Gen10
 - HPE ProLiant DL385 Gen10 Plus
 - HPE ProLiant DL560 Gen10
 - HPE ProLiant DL580 Gen10
- **Hypervisor:** VMware vSphere Hypervisor (VMware vSphere ESXi®) 6.5 or 6.7. This configuration requires a vSphere cluster that has already been added to a management VMware vCenter Server® instance

The testing described in this guide was performed in March 2020.

Target audience: The target audience for this deployment guide includes HPE Authorized Partner solution engineers, distributors, and value-added resellers, as well as customers.

Document purpose: Readers can use this document to achieve the following goals:

- Gain insight into the value proposition for the HPE Nimble Storage dHCI solution.
- Better understand the requirements of HPE Nimble Storage dHCI components.
- Better understand the recommended software and features that are part of the HPE Nimble Storage dHCI solution.
- Leverage design guidance to architect an HPE Nimble Storage dHCI solution to fit a particular set of business cases.
- Better understand the design considerations related to fault tolerance, performance, and scalability when architecting the solution.
TERMS AND ABBREVIATIONS

Command line interface (CLI): The CLI provides text-based access to a software or firmware component that enables a user to enter and execute commands. Connectivity is usually provided through Secure Shell (SSH), telnet, or a direct serial connection.

Fully qualified domain name (FQDN): An FQDN is a detailed domain name that specifies its precise location in the DNS hierarchy.

HPE Integrated Lights-Out (iLO): The embedded HPE iLO server management technology provides out-of-band management capabilities.

Intelligent Resilient Framework (IRF): IRF technology in HPE Comware-based switches allows multiple network devices (up to nine) to converge into a single fabric (both management and control planes) through physical IRF ports. All devices that participate in the IRF configuration are configured through a single IP address, and all network switches in the IRF configuration look like one device to all components in the network.

Multi-active detection (MAD): If an IRF failure occurs, the MAD mechanism detects other switches in the IRF stack that come online as masters and keeps only the switch with the lowest IRF ID master online. The other switches shut down their interfaces, effectively removing them from the network and preventing loops from developing in the network.

Multi-chassis link aggregation (MLAG): Link aggregation (LAG) is a way of bonding multiple physical links into a combined logical link. MLAG extends this capability, allowing a network and access devices to see both switches as a single device. With MLAG, you can create an active-active and redundant LAG connection to other network and access devices across the MLAG switch pair without using Spanning Tree Protocol (STP) or layer 3 routing protocols.

ROM-Based Setup Utility (RBSU): This HPE utility is both a menu-driven interface and a BIOS Serial Command Console CLI interface that enables users to perform configuration activities on the server.

Virtual local area network (VLAN): VLANs provide a method of segmenting a network into related groups, improving the efficiency of traffic flow, and limiting the propagation of multicast and broadcast messages. Traffic between VLANs is blocked unless the VLANs are connected by a router, which increases security.

SETTING UP THE SYSTEM

To prepare for deployment and then deploy the solution, you must complete the following tasks:

- Understand the physical infrastructure layout.
- Fill out the configuration worksheets.
- Configure the network.
- Deploy the HPE Nimble Storage dHCI solution:
 - Initialize and configure the HPE Nimble Storage arrays.
 - Use an existing VMware vCenter instance.
 - Add existing HPE ProLiant servers into the HPE Nimble Storage dHCI environment.
 - Create VMware vSphere Virtual Machine File System (VMFS) or VMware vSphere Virtual Volumes™ (vVols).
 - Migrate VMs on the newly created VMware vSphere VMFS.

Validated software/firmware level

For more information about the infrastructure components used in the solution and described in this document, including specific software and firmware versions, see the HPE Nimble Storage Validated Configuration Matrix on HPE InfoSight.

DEPLOYING THE COMPUTE PHYSICAL COMPONENTS

HPE ProLiant servers

Any of the following HPE ProLiant server models can be part of the configuration: DL360/380 Gen10, HPE ProLiant DL325/385 Gen10, HPE ProLiant DL325/385 Gen10 Plus, or HPE ProLiant 560/580 Gen10.

Hewlett Packard Enterprise recommends that you reserve a dedicated pair of 10 Gbps ports for iSCSI traffic only. If your servers do not have a pair of 10 Gbps ports available for iSCSI traffic, you must trunk the iSCSI VLAN on your existing 10 Gbps ports.
For site requirements, installation instructions, and other general reference materials, see the HPE Support Site.

NOTE
Although this guide does not cover iLO shared connections, HPE supports the use of an iLO shared connection instead of an iLO dedicated port. For more information, see HPE Integrated Lights Out (iLO 4) – Configuring the NIC Settings.

DEPLOYING THE STORAGE PHYSICAL COMPONENTS

HPE Nimble Storage arrays
For site requirements, installation instructions, and other general reference materials, see the HPE Nimble Storage documentation page of the HPE InfoSight portal (login required).

CABLING THE NETWORK, STORAGE, AND SERVER COMPONENTS

This section describes the cabling methodology to use with the HPE Nimble Storage dHCI solution. To simplify cabling for server and storage, match odd-numbered ports with switch 1 and even-numbered ports with switch 2 so that the ports match odd-to-odd and even-to-even.

HPE Nimble Storage network card configuration
Figure 1 shows the MGMT and iSCSI ports. Your array might differ from the one shown. For a specific cabling guide, see Hardware Guide – HFxx or Hardware Guide – AFxx.

FIGURE 1. HPE Nimble Storage array with two 10 Gbps ports on each controller
Cabling examples
Use the methodology shown in Figure 2 to cable your HPE ProLiant server, HPE Nimble Storage array, and network switch.

FIGURE 2. Cabling example: HPE ProLiant server with four 10 Gbps ports

If you do not have a pair of 10 Gbps ports available in your server, your cabling schema should look like the example shown in Figure 3.

FIGURE 3. Cabling example: HPE ProLiant server with two 10 Gbps ports
CONFIGURING THE ETHERNET SWITCH – NETWORK REQUIREMENTS

MTU
Many switches define maximum transmission unit (MTU) differently from the way the initiator or target defines it. Switches often define MTU as the frame size. End hosts almost universally define MTU as the packet size. The configured frame size on the switch might need to be larger than the packet size or the MTU value defined on the host and the array. For example, a value of 9000 on the host might require a value of 9014 or higher on the switch. This difference might vary by manufacturer.

Setting the switch MTU value to a number that is higher than the MTU value on the host or initiator does not cause problems. The switch MTU setting causes problems only when the MTU value on the intermediate device (the switch) is set to a number that is lower than the MTU value on one or both of the end devices.

Flow control
Flow control provides a mechanism for temporarily pausing the transmission of data on Ethernet networks if a sending node transmits data faster than the receiving node can accept it. Whenever possible, you should enable flow control on all host, switch, and array ports to ensure graceful communication between network nodes. HPE Nimble Storage array network interface cards (NICs) support flow control by default.

Jumbo frame
Ethernet frames that transport data are typically 1500 bytes in size. Anything over 1514 bytes (or 1518 with VLAN tagging) in the Ethernet frame is typically referred to as a jumbo frame. Jumbo frames are generally better suited to handle the flow of iSCSI SAN traffic. They typically consist of 9000-byte frames. Enabling jumbo frames can help to improve storage throughput and reduce latency.

Hewlett Packard Enterprise recommends using jumbo frames if your switch environment supports their use.

VLAN (existing server)
Hewlett Packard Enterprise recommends using two different VLANs for iSCSI traffic:

• One VLAN should map to one 10 Gbps port of your server.
• The other should map to the second 10 Gbps port.

If your server has four 10 Gbps ports, you should dedicate two ports to the use of iSCSI traffic only. These two ports should be configured in access mode (no VLAN tag), and each port should map to one VLAN only.

If your server has two 10 Gbps ports, you must trunk your iSCSI VLANs onto your existing ports and tag the VLANs accordingly.

LLDP
Link Layer Discovery Protocol (LLDP) must be enabled on each switch. HPE Nimble Storage dHCI uses LLDP during deployment to verify your environment.

Switch configuration examples
Refer to Appendix C: Switch configuration examples for step-by-step examples of configuring HPE M-Series, HPE Aruba, HPE FlexFabric, and Cisco Nexus switches.

INSTALLING AND CONFIGURING HPE NIMBLE STORAGE DHCI – BEFORE YOU BEGIN

The configuration worksheets contain lists of values that are required to complete the tasks described in this deployment guide. Before you begin to deploy an HPE Nimble Storage dHCI solution, ensure that the configuration worksheets are completed by the customer with the correct and validated values. You can expand the example worksheets in Appendix A: Configuration worksheets to suit your needs.

During deployment, HPE Nimble Storage dHCI verifies the existing ESXi server configuration to confirm that your environment is configured properly. Use the following sections to help you complete the prerequisites before starting deployment.

Supported server model
For environments with existing servers and clusters, the HPE Nimble Storage dHCI solution supports only HPE ProLiant DL360 or HPE ProLiant DL380 Gen9 or Gen10 models.

Supported server connectivity
For environments with existing servers and clusters, the HPE Nimble Storage dHCI solution supports only 10 Gbps or greater connectivity for servers.
VMware ESXi image for HPE servers
To be able to discover and use your existing HPE ProLiant server with HPE Nimble Storage dHCI, you must use the VMware ESXi image for HPE servers. For more information about using the image, see the vCenter web client, as shown in the following procedure:

1. In the vCenter web client, go to Hosts and Clusters.
2. Select a host.
3. Click Summary.
4. Under Configuration, see the Image Profile.

![Image profile in configuration list](image)

NOTE
If your environment does not use the HPE VMware ESXi image, email support@nimblestorage.com for assistance before moving forward.

FQDN versus IP addresses
In deploying an HPE Nimble Storage dHCI solution, it is important that all components being deployed have proper forward and reverse DNS entries entered in the network’s DNS server. This guide assumes that the site where the solution is being deployed already has a DNS server and that the existing server will be modified accordingly by the end user to accommodate the solution.

It is also acceptable to deploy and configure a DNS server just for the use of this solution if that is the preferred strategy; however, the deployment guide does not cover that option.

Throughout the guide, wherever you are asked to enter a component’s IP address, you can also enter a DNS name or a fully qualified domain name (FQDN) for the component. In general, Hewlett Packard Enterprise recommends that you use the FQDN of the components whenever possible.

DNS
Use the same DNS server across the servers and the HPE Nimble Storage array configuration to ensure that all relevant host names resolve to the same IP addresses.

NTP
Use the same NTP server across the servers and the HPE Nimble Storage array configuration to ensure that the time is set the same for all components.

HPE Nimble Storage Connection Manager
Before deploying the HPE Nimble Storage dHCI solution, you must install HPE Nimble Storage Connection Manager (NCM) on each host where the HPE Nimble Storage dHCI solution will be deployed.

If you have an internet connection, you can use **ESXCLI** to install HPE NCM for VMware on the ESXi host as an online bundle. ESXCLI connects with the download page of the HPE InfoSight portal and then installs NCM on the ESXi host. When you install NCM as an online bundle, you do not need to download the NCM software and copy it to the ESXi host.

For information about how to install NCM if your server does not have access to the internet, see the **VMware Integration Guide**.

Before you begin, make sure that the following arrangements are in place:
• Provide root access to the ESXi host.

• Establish an internet connection between the ESXi host and HPE InfoSight.

• Set up an SSH client such as PuTTY on the Windows or Linux® host.

• Provide TLS v1.2 or later support on the ESXi host for update.nimblestorage.com.

To install NCM, complete the following steps:

1. Using the VMware vSphere web client, place the ESXi host in maintenance mode.
2. Launch the SSH client from the Windows or Linux host.
3. Specify the IP address of the ESXi server in the Host Name field and click Open.
4. Log in to the ESXi host as the root user.
5. From the root directory, run the ESXCLI command line for the NCM software package that matches your host’s version of ESXi. This command line installs the online NCM bundle. For ESXi 6.5 or 6.7, run the following command: `esxcli software vib install -d https://update.nimblestorage.com/esx6.5/ncm`
6. Reboot the ESXi host after installing, updating, or uninstalling NCM.

Hardware iSCSI

HPE does not currently support using the iSCSI offload functionality on HPE FlexFabric adapters with HPE Nimble Storage arrays. To establish iSCSI communication, the HPE Nimble Storage dHCI solution creates the VMware iSCSI initiator as part of the deployment.

VMware vCenter Server license

The HPE Nimble Storage dHCI solution requires VMware vCenter Server for Essentials™ or VMware vCenter Server Standard™.

Firewall

Make sure that your firewall allows communication in both directions:

• HPE Nimble Storage array communication to the vCenter instance through port 443 and 8443
• VMware vCenter communication to the HPE Nimble Storage array through port 443 and 8443
• HPE Nimble Storage array to ESXi over SSH port 22

For more information, see the VMware KB [Required ports for configuring an external firewall to allow ESX/ESXi and vCenter Server traffic (1005189)](http://kb.vmware.com/solutions/1005189).

VMware license

The HPE Nimble Storage dHCI solution requires a VMware® license that provides VMware vSphere high-availability functionality and APIs for Array Integration and Multipathing.

Hewlett Packard Enterprise recommends using ESXi Enterprise Plus.

ESXi iSCSI network configuration

This section provides a high-level overview of the steps that are required to configure the ESXi iSCSI network. You must perform the steps in the specified order. The procedure in this section uses the recommended settings for the HPE Nimble Storage dHCI solution. For more information about other supported configuration examples, see [HPE Nimble Storage Deployment Considerations for VMware vSphere 6](http://www.hpe.com/za/en/solutions-software-support-support/hpe-enterprise-storage/arrays/nimble-storage-deployment-considerations-vmware-vsphere-6.html).

Configure ESXi iSCSI networking with multiple vSwitches

This task takes you through the process of setting up an ESXi iSCSI network configuration for multiple switches with the following configuration:

• Two vmnic ports
• Two vmk ports
• Two vSwitches
• One vmnic port and one vmk port on each switch

The following requirements apply:
• Maintain a one-to-one relationship between vmnic ports and vmk ports. For example, if you have four vmnic ports, you must have four vmk ports.

• Disable NIC teaming. Each vmk port can have only one active vmnic port and no standby vmnic ports. The HPE best practice is to not use NIC teaming in this configuration.

• Ensure that your system has a consistent, end-to-end maximum transmission unit (MTU) that flows from the host to the vSwitch to the switch to the array. You can either use a standard MTU on all the devices or use jumbo frames.

To configure ESXi iSCSI networking with multiple vSwitches, complete the following steps:

1. At the Configure Physical Adapters window on the ESXi host, identify the vmnics that you want to use for iSCSI networking.
2. Go to the Configure Virtual Switches window on the ESXi host and click **Add Networking**.
3. Select **VMkernel Network Adapter** and click **Next**.
4. Select **Create a virtual switch** and click **Next**.
5. Click the plus sign (+) and select the desired vmnic.
6. Click **OK** and then **Next**.
7. Assign a port group name and click **Next**.
8. Assign an IP address and subnet information for the first vmk port and click **Next**.
9. Review the proposed configuration and, if everything is correct, click **Finish**.
 The Configure Virtual Switches window displays the new vSwitch and vmk port.
10. To configure the second switch, click **Add Networking**.
11. Select **VMkernel Network Adapter** and click **Next**.
12. Select **New Standard Switch** and click **Next**.
13. Click the green plus sign (+) and select the desired vmnic.
14. Click **OK** and then **Next**.
15. Assign a unique port group name and click **Next**.
16. Assign an IP address and subnet information and then click **Next**.
17. Review the proposed configuration and, if everything is correct, click **Finish**.
 The Configure Virtual Switches window displays the new vSwitch and vmk port.

MTU settings

When you use iSCSI, your system must have a consistent, end-to-end maximum transmission unit (MTU) that flows from the host to the vSwitch to the switch to the array. It is a good practice to confirm that the values are correct.

For a **vSwitch**, complete the following steps:

1. Starting from the vSwitch view, select **Configure**.
2. Select **Virtual Switches**.
3. Click **Edit** (the pencil icon).
4. Modify the MTU size if needed.

For a **VMK adapter**, complete the following steps:

1. Starting from the VMK adapter, select **Configure**.
2. Select **VMKernel Adapters**.
3. Click **Edit** (the pencil icon).
4. Modify the MTU size if needed.
SSH

SSH must be enabled on each ESXi host for the deployment. To enable it, complete the following steps:

1. Select the host, click **Manage**.
 Leave the default selections for all settings.
2. Click **Security Profile**.
3. In the Services section, click **Edit**.
4. Select **SSH**.
5. Click **Start**.
6. Click **OK**.

BIOS workload profile (Gen10 only)

Hewlett Packard Enterprise recommends that you use the **Virtualization - Max Performance** profile to ensure that all available virtualization options are enabled.

1. From the System Utilities window, navigate to **System Configuration → BIOS/Platform Configuration (RBSU) → Workload Profile**.
2. Select **Workload Profile → Virtualization → Max Performance**.
3. Save your selection and reboot to apply your workload profile.

DEPLOYING THE HPE NIMBLE STORAGE DHCI SOLUTION

To deploy the solution, you must first discover the array by using DNS resolution and then configure the solution.

Discover the array

1. Connect the laptop or desktop to the management VLAN.
2. Open a browser and enter `https://<Array Serial Number>.local` in the address bar (for example, `https://AF-123456.local`).
3. Set up the HPE Nimble Storage array:
 a. Review the array's serial number to confirm that you are configuring the correct array.
 b. Select **Set up this array (but do not join a group)**, and click **Next**.
 c. Set the following values:
 - **Array name:** `<<nimble_system_name>>`
 - **Group name:** `<<nimble_group_name>>`
 - **Management IP address:** `<<nimble_mgmt_ip>>`
 - **Netmask:** `<<mgmt_net_netmask>>`
 - **Default gateway:** `<<mgmt_net_gw>>`
 - **Domain name:** `<<mgmt_net_domain_name>>`
 - **Create and confirm password:** `<<nimble_admin_pwd>>`
4. Click **Finish** and wait a few minutes for the array to initialize.
5. When initialization is complete, click **Continue**.
6. Log in to the array with the user name `admin` and the password `<<nimble_admin_pwd>>`.
7. Click **Add** and set the following values:
 - **Subnet label:** iSCSI-A
 - **Network:** `<<iscsia_network>>`
 - **Netmask:** `<<iscsia_netmask>>`
- **Traffic type:** Data only
- **Traffic assignment:** iSCSI + Group
- **Discovery IP:** `<nimble_iscsi_a_discovery_ip>`
- **IP address zone:** Single
- **MTU:** Jumbo (if your switch supports jumbo frames)

8. Click **Add** again, set the following values, and then click **Next**:
 - **Subnet label:** iSCSI-B
 - **Network:** `<iscsib_network>`
 - **Netmask:** `<iscsib_netmask>`
 - **Traffic type:** Data only
 - **Traffic assignment:** iSCSI + Group
 - **Discovery IP:** `<nimble_iscsi_b_discovery_ip>`
 - **IP address zone:** Single
 - **MTU:** Jumbo (if your switch supports jumbo frames)

9. Select the traffic type **Mgmt only** for the management subnet.

10. On the **Network Settings** page, set the following values (adjusting these example values to your environment) and then click **Next**:
 - **Interface assignments:**

Interface	Subnet	Data IP address
eth0a	Management	N/A
eth0b	Management	N/A
tg1a	iSCSI-A	`<nimble_iscsi_a_data_ip>`
tg1b	iSCSI-B	`<nimble_iscsi_b_data_ip>`

 - **Controller A diagnostic IP address:** `<nimble_iscsi_a_data_ip>`
 - **Controller B diagnostic IP address:** `<nimble_iscsi_b_data_ip>`

11. On the **Domain** page, set the following values and then click **Next**:
 - **Domain name:** `<mgmt_net_domain_name>`
 - **DNS servers:** `<mgmt_net_dns1>`

12. Set the appropriate time zone and management network NTP server (`<mgmt_net_ntp1>`) and click **Next**.

13. On the **Support** page, set the appropriate values for the customer environment in which the array will be deployed and click **Finish**.

14. When setup is complete and the **Setup Complete** dialog box appears, click **Continue** to be redirected to the HPE Nimble Storage dHCI setup page.

Configure the solution

1. On the welcome page, carefully read the prerequisites and click **Next**.

2. Choose the appropriate vCenter Server option:
 a. Click **Use an existing vCenter Server** and set the following values:
 - **vCenter host name:** `<vcenter_fqdn>`
 - **Administrator user name:** `<vcenter_ip_address>`
 - **Administrator password:** `<vcenter_administrator_password>`
b. Read and accept each EULA and then click **Next**.

3. Select an existing cluster from the vCenter Server:
 a. Click **Choose an existing cluster from the vCenter**
 b. Select your existing cluster from the drop-down list.
 c. Provide the ESXi root password and click **Validate Server Configuration**.
 d. If the server configuration check returns any problems, you must fix all of them before moving forward.
 To see the complete list, click the **violations found** message.

 ![Server Configuration Results](image)

 - **FIGURE 5.** Error message for violations found

 e. After you have fixed all of the problems, click **Validate Servers Again**.
 f. Repeat these steps until there are no problems left and then click **Next**.

4. **Optional:** After the deployment tool discovers all servers that can be used with the HPE Nimble Storage dHCI solution, select each server you want to use with the solution and click **Next**.

5. **Optional:** Set following values and then click **Next**:
 - Management IP address range: <<mgmt_ip_range>>
 - iSCSI IP address range 1: <<iscsi1.ip_range>>
 - iSCSI IP address range 2: <<iscsi2.ip_range>>
 - ESXi root password: <<esxi_root_password>>
 - iLO HPE Nimble Storage dHCI admin password: <<ilo_dhci_admin_password>>

6. In the Provision Datastores section, click **Add Datastore**.

7. Click **Select a datastore type** and select either **VMFS** or **vVol**
 - **For VMFS:** Provide the following information and then click **Next**
 a. Enter a datastore name.
 b. Specify the datastore size in MiB, GiB, or TiB.
 c. Select a protection template from the list of available templates.
 - **For vVol:** Provide the following information and then click **Next**
 a. Enter a datastore name.
 b. Specify the datastore size in MiB, GiB, or TiB.

8. **Optional:** You can migrate your VMs as part of the deployment.
 a. Click **Select Target datastore** and select the newly created datastore.

9. Review the information and click **Finish**.

10. When deployment is complete, you can log in to vCenter and manage your solution.
MANAGING THE HPE NIMBLE STORAGE DHCI SOLUTION

After deployment is successfully completed, you can perform a number of tasks from the HPE Nimble Storage dHCI vCenter plugin:

• Add a new server.
• Create a new VMFS datastore.
• Grow a VMFS datastore.
• Clone a VMFS datastore.
• Create a snapshot of a VMFS datastore.
• Create a vVol datastore.

Add a new server

To prepare for adding a new server, complete the following tasks:

• Confirm that the cabling is set up correctly:
 – Review and complete the Cabling the network, storage, and server section in this guide.
• Configure the switch and assign the correct VLAN:
 – Review and complete the Configuring the Ethernet switch – Network requirements section in this guide.
 – For any new server to be added, configure your switch based on the requirements listed in Table 2.

<table>
<thead>
<tr>
<th>VLAN description</th>
<th>VLAN ID</th>
<th>VLAN mode</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management/vMotion</td>
<td>mgmt_vlan</td>
<td>mgmt_vlan = native</td>
<td>Management/vMotion VLAN must be the native VLAN.</td>
</tr>
<tr>
<td>iSCSI1 IP address range</td>
<td>iscsi1_vlan</td>
<td>iscsi1_vlan = access</td>
<td>Native VLAN only.</td>
</tr>
<tr>
<td>iSCSI2 IP address range</td>
<td>iscsi2_vlan</td>
<td>iscsi2_vlan = access</td>
<td>Native VLAN only.</td>
</tr>
<tr>
<td>VM network</td>
<td>vm_network</td>
<td>vm_network = trunk</td>
<td>VM Network can be trunked on the Management interface</td>
</tr>
</tbody>
</table>

• Assign an IP address to the ESXi management interface:
 – Review and complete the DHCP server section or Configure static IP addresses on the ESXi hypervisor in this guide.
 – Review and complete the IP address ranges section in this guide.
 – Review and complete the ESXi servers discovery section in this guide.
• Add a server in the vSphere cluster by using the vCenter plugin.

When you add a new server, you do not have to configure vSwitch, iSCSI software initiator, or vmk binding because the HPE Nimble Storage dHCI solution configures it during deployment. Only the following actions are required:

• You must configure the HPE ProLiant network card.
• You must provide IP address ranges.
• You must make sure that multicast is enabled for ESXi server discovery.
• You must confirm that you have a DHCP server in the management VLAN for initialization or configure static IP addresses for the components.
HPE ProLiant network card configuration

The HPE Nimble Storage dHCI solution does not support the use of 1 Gbps ports, nor does it use the four 1 Gbps ports that are embedded in the HPE ProLiant series. These ports must remain unused.

During HPE Nimble Storage dHCI deployment, the deployment tool uses the first two ports for vSwitch 0 (MGMT), the third port for iSCSI1, and the fourth port for iSCSI2. If your server has more than four 10 Gbps ports, HPE Nimble Storage dHCI uses only the first four; the others remain unused. HPE Nimble Storage dHCI supports using the remaining ports to manually create a different vSwitch.

If your network card configuration differs from the one described here, keep in mind that the first two ports discovered in VMware ESXi must be used for management (MGMT) and network (VM Network). Port 3 must be used for iSCSI1, and port 4 must be used for iSCSI2.

Figure 6, Figure 7, and Figure 8 show the MGMT and iSCSI ports.

IP address ranges

During deployment, you must provide three different ranges of IP addresses. The number of servers in your environment determines the number of contiguous IP addresses that are needed in each range.
Use Table 3 to determine how many contiguous IP addresses are needed.

<table>
<thead>
<tr>
<th>IP address range description</th>
<th>Variable</th>
<th>VLAN</th>
<th>Number of contiguous IP addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management IP address range</td>
<td><<mgmt_ip_range>></td>
<td>mgmt_vlan</td>
<td>Each HPE ProLiant server requires two IP addresses: one for iLo and one for the ESXi management interface</td>
</tr>
<tr>
<td>iSCSI1 IP address range</td>
<td><<iscsi1_ip_range>></td>
<td>iscsia_vlan</td>
<td>Each HPE ProLiant server requires one IP address</td>
</tr>
<tr>
<td>iSCSI2 IP address range</td>
<td><<iscsi2_ip_range>></td>
<td>iscsib_vlan</td>
<td>Each HPE ProLiant server requires one IP address</td>
</tr>
</tbody>
</table>

The following example shows how to determine the number of IP addresses needed for an HPE Nimble Storage dHCI solution with six HPE ProLiant servers, based on the rules provided in the table:

- **Management IP address range**: 6 HPE ProLiant servers × 2 IP addresses = 12 contiguous IP addresses in the management range
- **iSCSI1 IP address range**: 6 HPE ProLiant servers × 1 IP address = 6 contiguous IP addresses in the iSCSI1 range
- **iSCSI2 IP address range**: 6 HPE ProLiant servers × 1 IP address = 6 contiguous IP addresses in the iSCSI2 range

ESXi servers discovery

The array uses Service Location Protocol (SLP) to discover the ESXi servers. By default, SLP should be running on all ESXi hosts.

No user interaction is required. However, the capability for multicast might need to be enabled on switches. To enable multicast, use the following commands to disable IGMP snooping on the switch:

- **For Cisco**: By default, IGMP snooping is turned on.

  ```
  # configure terminal
  (config)# vlan 100
  (config-vlan)# no ip igmp snooping
  (config-vlan)# do write memory
  ```

- **For FlexFabric**: By default, IGMP snooping is turned off.

  ```
  # system-view
  # display igmp-snooping
  # vlan 100
  # undo igmp-snooping enable
  # quit
  # save
  ```

If no servers are discovered during deployment, take the following steps:

1. Make sure that IGMP snooping is turned off on your switches.
2. Make sure that each ESXi host has an IP address on the management VLAN.
3. Make sure you have not cabled any 1 Gb ports on ESXi hosts for the deployment. (They can be used after deployment.)
4. Make sure that the VMNIC selected for the management interface is the first port connected at 10 Gb:
 a. From the server console, press **F2** and log in as **root**, using **Prostack123!** as the password.
 b. Select the **Configure Management** network.
 c. Select **Network adapters**
 d. Change the adapter to the first 10 Gb port (by pressing the space bar to add or remove adapters).
 e. Press **Enter**, press **ESC**, and apply the setting.
5. Restart the SLP server on each ESXi host:
 a. Log in as **root** and use **Prostack123!** as the password.
 b. Run `/etc/init.d/slpd restart`.
DHCP server
In deploying an HPE Nimble Storage dHCI solution, Hewlett Packard Enterprise recommends that you include a DHCP server in the management VLAN for the initialization of the HPE Nimble Storage dHCI solution only. After the HPE Nimble Storage dHCI solution is deployed, you may remove the DHCP server from the management VLAN.

This guide assumes that the site where the HPE Nimble Storage dHCI solution is being deployed already has a DHCP server, which you will modify to accommodate the HPE Nimble Storage dHCI solution deployment.

NOTE
It is also acceptable not to use a DHCP server and to configure static IP addresses before deploying HPE Nimble Storage dHCI. For more information about the option of configuring static IP addresses, see Configure static IP addresses on the ESXi hypervisor. Both static IP addresses and IP addresses from DHCP servers are temporary. New IP addresses are assigned during deployment.

Configure static IP addresses on the ESXi hypervisor
If you do not have a DHCP server, use the following procedure to configure static IP addresses for all components before beginning the deployment of your HPE Nimble Storage dHCI solution.

Before you begin, verify that you have the correct versions of all firmware components as specified in this guide. You must complete the following steps on each HPE ProLiant DL rack server in your configuration:

1. Connect the keyboard and monitor to the HPE ProLiant DL rack server.
2. Power up the server.
3. After the server reboots, press F2 to open the RBSU and customize the system.
5. Select Network Adapters and press Enter.
6. In the Network Adapters dialog box, select your correct vmnic interface (for example, vmnic4 or vmnic5).
7. Press Enter to confirm the network adapter selections.
8. Select IPv4 Configuration.
9. In the IPv4 Configuration dialog box, provide the following information about your network and then press Enter:
 a. Set the IPv4 address.
 b. Specify the subnet mask.
 c. Identify the default gateway.
10. Select DNS Configuration.
11. In the DNS Configuration dialog box, provide the following information and then press Enter:
 a. Specify the primary DNS server.
 b. Specify the host name.
12. Select Custom DNS Suffixes.
13. In the Custom DNS Suffixes dialog box, specify the suffixes and press Enter.
14. Press Esc to exit the Configure Management Network submenu.
15. Press Y to confirm the changes and return to the main menu.
17. In the Troubleshooting Options dialog box, select Enable SSH and press Enter.
18. Press Esc to exit the Troubleshooting Mode Options submenu.
19. Press Esc to return to the login screen.
20. Repeat this procedure for all other HPE ProLiant servers in the configuration.
NOTE
Both static IP addresses and IP addresses from DHCP servers are temporary. New IP addresses are assigned during deployment.

Use the vCenter plugin to add a server
After you complete the procedures described in Deploying the HPE Nimble Storage dHCI solution, you can use the vCenter plugin to add your server.

1. Open a web browser and connect to vCenter (HTML5).
2. Click Menu and select HPE Nimble Storage.
3. Click Nimble Groups and select your group.
4. Click Inventory and select Servers.
5. Click the plus sign (+) to add a server.
6. After the plugin discovers the servers that are candidates for the HPE Nimble Storage dHCI solution, select the server that you want to add and click Next.
7. Provide values in the following fields and then click Next:
 - Management IP range: <<mgmt_ip_range>>
 - iSCSI IP range 1: <<iSCSIA_ip_range>>
 - iSCSI IP range 2: <<iSCSIB_ip_range>>
 - ESXi root password: <<esxi_dHCI_admin_password>>
 - iLO HPE Nimble Storage dHCI admin password: <<ilo_dHCI_admin_password>>
8. Review the information and click Add to have the HPE Nimble Storage dHCI solution configure your server and add it to the vSphere cluster automatically.

Create a new VMFS datastore
You can use the HPE Nimble Storage dHCI vCenter plugin to create VMFS datastores that are mapped to volumes on an HPE Nimble Storage array. The vCenter plugin always uses the latest VMFS version available to provision a datastore.

1. Open a web browser and connect to vCenter (HTML5).
2. Click Menu and select HPE Nimble Storage.
3. Click Nimble Groups and select your group.
4. Click Datastores and select VMFS.
5. Click the plus sign (+) to add a new datastore.
6. In the Datastore dialog box, provide the following information and then click Next:
 a. Specify a name for the datastore.
 b. Provide a short description of the datastore.
 c. Select the datacenter where you want the VMFS datastore to be created.
 d. Under Protocol, select iSCSI.
 e. Under Host, select your HPE Nimble Storage dHCI cluster.
7. Specify a size for the VMFS datastore (leaving the other default parameters unchanged) and click Next.
8. Select from the following protection and synchronization options to use with this datastore and then click Next:
 - No volume collection. No protection schedule is set up for the datastore.
 - Join volume collection. Use the search option or the drop-down list to select an existing volume collection. When you select a volume collection, the wizard displays its protection schedule.
 - Create new volume collection. The dialog box expands to enable you to create a volume collection and a schedule for it. You must provide a name for the volume collection. You can then use that volume collection with another datastore, if you choose to. Next,
complete the information in the Create Volume Collection section of the dialog box. You might need to use the scroll bar to see all the options:

- **Start from protection template.** Decide whether to use one of the default protection templates as the basis for the volume collection you are creating. Otherwise, select **No protection template**.

- **Replication type.** If you have a replication partner set up, you can select **Periodic snapshot**. The vCenter plugin takes snapshots of the datastore that you can use for a backup based on the schedule you specify.

- **Replication partner.** If you select **Periodic snapshot** as the replication type, you must supply a value in this field.

- **Synchronization service.** From the drop-down list, select the application that provides the synchronization. If you select **VMware vCenter**, you must provide a host IP address or a host name, the port number to be used for communication (default: 443), and a user name and password for the host.

- **Schedule name.** Provide a name that you can use to identify the schedule. It is a good practice to include in the name a summary of the schedule; for example, **Retain-30Daily** indicates that backups are made daily and are retained for 30 days. In this section of the dialog box, you can specify when backups will be taken, how often they will be taken, and how long they will be retained. You can also specify how frequently to update the replication partner by using one of the backup snapshots.

- **Protect as standalone volume.** The dialog box expands to enable you to create a volume collection and a schedule that is specific to that datastore. You do not need to provide a name for this schedule; however, you must supply the other information that you would supply if you had selected Create a new volume collection.

9. Set limits for IOPS and MBps and click **Next**.

 You can select either **No Limit** or **Set Limit**, which allows you to enter a value for that option.

10. View the settings summary and click **Finish**.

Grow a VMFS datastore

You can use the HPE Nimble Storage dHCI vCenter plugin to grow or resize a traditional datastore. You must have the correct permissions to perform this task. It is a best practice to use the plugin to grow HPE Nimble Storage datastores because it prevents you from selecting the wrong device during a grow operation.

1. Open a web browser and connect to **vCenter (HTML5)**
2. Click **Menu** and select **HPE Nimble Storage**
3. Click **Nimble Groups** and select your group.
4. Click **Datastores** and select **VMFS**
5. Select the datastore that you want to grow.
6. Click the **Grow** sign.
7. Type in the new size and select the unit type.
8. Click **Grow**

Clone a VMFS datastore

You can use the HPE Nimble Storage dHCI vCenter plugin to clone VMFS datastores that reside on an HPE Nimble Storage array. Clones are created from snapshots.

1. Open a web browser and connect to **vCenter (HTML5)**
2. Click **Menu** and select **HPE Nimble Storage**
3. Click **Nimble Groups** and select your group.
4. Click **Datastores** and select **VMFS**
5. Select the datastore you want to clone.
6. Click the **Clone** sign.
7. Specify a name for the clone.
8. Select the number of clones that you want to create.
9. Choose whether you want to use an existing snapshot or create a new one.
– If you choose to use an existing snapshot, the wizard displays a list of existing snapshots.
– If you choose to create a new one, enter the name for the new snapshot.

10. Click **Clone**.

Create a snapshot of a VMFS datastore

You can use the HPE Nimble Storage dHCI vCenter plugin to create snapshots of VMFS datastores that are mapped to volumes on an HPE Nimble Storage array.

1. Open a web browser and connect to [vCenter (HTML5)](vCenter).
2. Click **Menu** and select **HPE Nimble Storage**.
3. Click **Nimble Groups** and select your group.
4. Click **Datastores** and select **VMFS**.
5. Select the datastore for which you want to create a snapshot.
6. Click the **Snapshot** sign.
7. Provide a name for the snapshot.
8. Enter a description.
9. Click **Create**.

Create a vVol datastore

The Create Datastore wizard enables you to create a vVol datastore and map it to a folder on an HPE Nimble Storage array.

1. Open a web browser and connect to [vCenter (HTML5)](vCenter).
2. Click **Menu** and select **HPE Nimble Storage**.
3. Click **Nimble Groups** and select your group.
4. Click **Datastores** and select **vVol**.
5. Click the green plus sign (+) to add a datastore.
6. Provide the following information and then click **Next**:
 a. Specify a name for the datastore.
 b. Provide a description of the datastore.
 c. Identify the datacenter where you want the vVol to be created.
 d. Under **Protocol**, select **iSCSI**.
 e. Under **Host**, select your HPE Nimble Storage dHCI cluster.
7. Set a space limit for your vVol folder and click **Next**.
8. Set limits for IOPS and MBps and click **Next**.
 You can select either **No Limit** or **Set Limit**, which allows you to enter a value for that option.
9. Click **Create**.

For other tasks related to vVols, see the appropriate VMware Integration Guide for your version of NimbleOS, available on HPE Infosight.
USING HPE INFOSIGHT WITH HPE NIMBLE STORAGE DHCI

HPE InfoSight is an artificial intelligence (AI) platform that is built on a unique approach to data collection and analysis, an approach that goes well beyond depending on the logs and obvious metrics that are used in traditional infrastructure. Every second, for almost a decade now, HPE InfoSight has been collecting and analyzing millions of sensors from its globally connected installed base. It collects thousands of embedded sensors that are built into every storage system and pulls in data from VMware for full-stack visibility.

This data is not analyzed in isolation. It is sent to the cloud, where HPE applies advanced machine learning to drive its predictive analytics and recommendation engines. The predictive analytics capabilities of HPE InfoSight extend across the lifecycle from planning to managing to expanding. Its recommendation engine tells IT administrators how to avoid issues, how to improve their environment, and how to get more out of their resources. The ability of HPE InfoSight to learn from every system enables it to identify ideal operating environments and to recognize abnormal patterns in infrastructure, configurations, and workloads.

This platform then drives predictive support automation, which goes far beyond proactive support. HPE InfoSight transforms the support experience by not only predicting problems but also preventing them from happening. The AI-driven approach to managing infrastructure through the HPE InfoSight cloud portal tells IT exactly how to improve their environment. In addition, it offers a unique product experience in which the infrastructure that is supported by HPE InfoSight continues to get smarter and more reliable.

The following sections describe the configuration of your HPE InfoSight portal.

Create an HPE Passport account

By default, the first enrolled user of an HPE Passport account is given the superuser role. Subsequent enrolled users are given the standard user role. Only a superuser can associate a new email address with an account in HPE InfoSight. As a new user, you must create an HPE Passport account (if you do not already have one) to access the account on HPE InfoSight.

1. Go to HPE InfoSight.
2. Click Create Account to register for an HPE Passport account, which enables you to log into HPE InfoSight.
3. Complete the fields on the Create a new account page and click Create account.
4. Wait to receive an email with steps for you to verify your new Passport account.

NOTE

If you are a new customer and your email address is not recognized by the system, email support@nimblestorage.com for assistance.

Register your HPE Nimble Storage assets

Before you can register your HPE Nimble Storage assets, you must have created a Passport account. If you are not associated with any HPE Nimble Storage account, you must be invited by another member of your organization.

1. Sign in to HPE InfoSight.
 If your account is not associated with any assets, a banner appears saying that you must register your systems with HPE InfoSight to associate those systems with your account.
2. Choose one of the following actions:
 - Click one of the links in the banner.
 - In the settings menu (the gear icon), under Nimble, click Register.
3. Follow the steps to complete the registration.

Enable streaming for HPE InfoSight and Cross-Stack Analytics

For data to be streamed over to HPE InfoSight, you must log in to the HPE InfoSight portal and make some modifications.

1. Log in to HPE InfoSight.
2. From the settings menu (the gear icon), select Telemetry Settings.
3. Locate the array you want to monitor and click the Streaming button to On.
 This button enables data streaming from the array.
4. In the same row, click the **VMware** button to **On**. This button allows data to be collected from VMware.

5. Wait for HPE InfoSight to process the vCenter registration and start streaming VMware and array data (up to 48 hours).

HPE Nimble Storage dHCI Overview Dashboard

The HPE Nimble Storage dHCI Overview Dashboard offers views of HPE Nimble Storage dHCI solutions and shows CPU, memory, and capacity utilization for each HPE Nimble Storage dHCI solution you have. This is the ideal place to look for a quick health check across your HPE Nimble Storage dHCI environment.

![HPE Nimble Storage dHCI Overview Dashboard](image)

FIGURE 9. HPE Nimble Storage dHCI Overview Dashboard

HPE Nimble Storage dHCI Cluster Dashboard

The HPE Nimble Storage dHCI Cluster Dashboard shows an overview of the environment. Each section of the dashboard offers a specialized view of the system:

- **Virtualization section:** The virtualization section offers views of the host utilization from a CPU and memory perspective. It also shows which VMs are top-performing in terms of latency and IOPS.

- **Compute section:** The compute section shows the CPU and memory utilization of your HPE Nimble Storage dHCI cluster. It also predicts when you will run out of CPU or memory.

- **Storage section:** The storage section displays the used capacity and overall space savings that can be achieved through various data-savings techniques.

- **Wellness section:** The wellness section summarizes any problems related to the array and servers.

![HPE Nimble Storage dHCI Cluster Dashboard](image)

FIGURE 10. HPE Nimble Storage dHCI Cluster Dashboard
APPENDIX A: CONFIGURATION WORKSHEETS

The following configuration worksheets list the values that are required to complete the procedures in this deployment guide. Before beginning deployment of an HPE Nimble Storage dHCI solution, make sure that the customer has completed the configuration worksheets with correct and validated values. You can expand the example configuration worksheets as needed to suit your situation.

Certain products have naming or password character restrictions. Before you complete this chapter, refer to the documentation for each component to understand whether there are any restrictions.

Table 4. Global networking configuration worksheet

<table>
<thead>
<tr>
<th>Global networking description</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management network VLAN</td>
<td><<mgmt_net_vlan>></td>
<td></td>
</tr>
<tr>
<td>Management network netmask</td>
<td><<mgmt_net_netmask>></td>
<td></td>
</tr>
<tr>
<td>Management network gateway</td>
<td><<mgmt_net_gw>></td>
<td></td>
</tr>
<tr>
<td>Management network DNS server</td>
<td><<mgmt_net_dns1>></td>
<td></td>
</tr>
<tr>
<td>Management network domain name</td>
<td><<mgmt_net_domain_name>></td>
<td></td>
</tr>
<tr>
<td>Management network NTP server</td>
<td><<mgmt_net_ntp1>></td>
<td></td>
</tr>
<tr>
<td>VM production network VLAN</td>
<td><<vm_production_net_1_vlan>></td>
<td></td>
</tr>
<tr>
<td>Dead VLAN</td>
<td><<dead_net_vlan>></td>
<td></td>
</tr>
<tr>
<td>iSCSI A VLAN</td>
<td><<iscsia_vlan>></td>
<td></td>
</tr>
<tr>
<td>iSCSI B VLAN</td>
<td><<iscsib_vlan>></td>
<td></td>
</tr>
<tr>
<td>iSCSI A network</td>
<td><<iscsia_network>></td>
<td></td>
</tr>
<tr>
<td>iSCSI B network</td>
<td><<iscsib_network>></td>
<td></td>
</tr>
<tr>
<td>iSCSI A netmask</td>
<td><<iscsia_netmask>></td>
<td></td>
</tr>
<tr>
<td>iSCSI B netmask</td>
<td><<iscsib_netmask>></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. HPE Nimble Storage configuration worksheet

<table>
<thead>
<tr>
<th>HPE Nimble Storage description</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPE Nimble Storage system name</td>
<td><<nimble_system_name>></td>
<td></td>
</tr>
<tr>
<td>HPE Nimble Storage group name</td>
<td><<nimble_group_name>></td>
<td></td>
</tr>
<tr>
<td>HPE Nimble Storage management IP address</td>
<td><<nimble_mgmt_ip>></td>
<td></td>
</tr>
<tr>
<td>HPE Nimble Storage controller A diagnostic IP address</td>
<td><<nimble_ctl_a_diag_ip>></td>
<td></td>
</tr>
<tr>
<td>HPE Nimble Storage controller B diagnostic IP address</td>
<td><<nimble_ctl_b_diag_ip>></td>
<td></td>
</tr>
<tr>
<td>HPE Nimble Storage management FQDN</td>
<td><<nimble_fqdn>></td>
<td></td>
</tr>
<tr>
<td>HPE Nimble Storage admin password</td>
<td><<nimble_admin_pwd>></td>
<td></td>
</tr>
<tr>
<td>HPE Nimble Storage iSCSI A discovery IP address</td>
<td><<nimble_iscsi_a_discovery_ip>></td>
<td></td>
</tr>
<tr>
<td>HPE Nimble Storage iSCSI B discovery IP address</td>
<td><<nimble_iscsi_b_discovery_ip>></td>
<td></td>
</tr>
<tr>
<td>HPE Nimble Storage iSCSI A data IP address</td>
<td><<nimble_iscsi_a_data_ip>></td>
<td></td>
</tr>
<tr>
<td>HPE Nimble Storage iSCSI B data IP address</td>
<td><<nimble_iscsi_b_data_ip>></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 6. HPE FF switches configuration worksheet

<table>
<thead>
<tr>
<th>HPE FF switches description</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network switch management IP address</td>
<td><<net_switch1_mgmt_ip>></td>
<td></td>
</tr>
<tr>
<td>Network switch host name</td>
<td><<net_switch1_hostname>></td>
<td></td>
</tr>
<tr>
<td>Network switch 1 MAD IP address</td>
<td><<net_switch1_mad_ip>></td>
<td></td>
</tr>
<tr>
<td>Network switch 2 MAD IP address</td>
<td><<net_switch2_mad_ip>></td>
<td></td>
</tr>
<tr>
<td>MAD network netmask</td>
<td><<mad_net_netmask>></td>
<td></td>
</tr>
<tr>
<td>Network switch admin password</td>
<td><<net_switch_admin_password>></td>
<td></td>
</tr>
<tr>
<td>Network switch IRF domain ID</td>
<td><<net_switch_domain_id>></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 7. HPE M-Series switches configuration worksheet

<table>
<thead>
<tr>
<th>HPE M-Series switches description</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network switch 1 management IP address</td>
<td><<net_switch1_mgmt_ip>></td>
<td></td>
</tr>
<tr>
<td>Network switch 2 management IP address</td>
<td><<net_switch2_mgmt_ip>></td>
<td></td>
</tr>
<tr>
<td>Network switch MLAG VIP</td>
<td><<mlag-vip>></td>
<td></td>
</tr>
<tr>
<td>Network switch 1 MLAG IP address</td>
<td><<mlag_private_ip1>></td>
<td></td>
</tr>
<tr>
<td>Network switch 2 MLAG IP address</td>
<td><<mlag_private_ip2>></td>
<td></td>
</tr>
<tr>
<td>MLAG network netmask</td>
<td><<mlag_private_netmask>></td>
<td></td>
</tr>
<tr>
<td>Network switch admin password</td>
<td><<net_switch_admin_password>></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 8. HPE Aruba 83xx switches configuration worksheet

<table>
<thead>
<tr>
<th>HPE Aruba switches description</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network switch 1 management IP address</td>
<td><<net_switch1_mgmt_ip>></td>
<td></td>
</tr>
<tr>
<td>Network switch 2 management IP address</td>
<td><<net_switch2_mgmt_ip>></td>
<td></td>
</tr>
<tr>
<td>Network switch 1 VSX IP address</td>
<td><<net_switch1_vsx_ip>></td>
<td></td>
</tr>
<tr>
<td>Network switch 2 VSX IP address</td>
<td><<net_switch2_vsx_ip>></td>
<td></td>
</tr>
<tr>
<td>VSX network netmask</td>
<td><<vsx_net_netmask>></td>
<td></td>
</tr>
<tr>
<td>Network switch admin password</td>
<td><<net_switch_admin_password>></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 9. HPE Aruba 6300 switches configuration worksheet

<table>
<thead>
<tr>
<th>HPE Aruba switches description</th>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network switch 1 management IP address</td>
<td><<net_switch1_mgmt_ip>></td>
<td></td>
</tr>
<tr>
<td>Network switch 2 management IP address</td>
<td><<net_switch2_mgmt_ip>></td>
<td></td>
</tr>
<tr>
<td>Network switch admin password</td>
<td><<net_switch_admin_password>></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B: RESOURCES FOR AUTOMATION

This deployment guide describes the manual steps for building an HPE Nimble Storage dHCI solution based on the verified configuration. No automation is provided except for automation that is built into products. Most components of an HPE Nimble Storage dHCI solution have some type of library (REST, Python, Java, PowerShell, and so on) that can be used for automation efforts. The following list identifies resources that can be used to streamline deployments:

VMware
- VMware API and SDK documentation

HPE Nimble Storage
- HPE Nimble Storage API documentation, available on the HPE Nimble Storage documentation page of the HPE InfoSight portal (login required)

HPE Nimble Storage dHCI
- HPE Nimble Storage dHCI API documentation, available on the HPE Nimble Storage documentation page of the HPE InfoSight portal (login required)

HPE ILO
- HPE ILO RESTful API
APPENDIX C: SWITCH CONFIGURATION EXAMPLES

This section documents example setups of HPE M-Series, HPE Aruba, HPE FlexFabric, and Cisco Nexus switches.

HPE M-Series configuration example

This section describes how to configure HPE M-Series ONYX switches for use in an HPE Nimble Storage dHCI environment. Before configuring the switches, make sure that they are running the version of HPE ONYX (ONYX-3.8.2204 or later revisions) that is specified in the HPE Nimble Storage Validated Configuration Matrix. A base HPE Nimble Storage dHCI deployment must use a minimum of two network switches of the same model. The example described in this section is based on use of two HPE M-series SN2010M switches.

To configure the HPE M-Series switches for HPE Nimble Storage dHCI, you must complete the following tasks:

1. Set up the initial configuration on new and factory-default HPE M-Series switches, and update both switches to the latest ONYX release.
2. Set up the inter-peer link (IPL) port-channel and the MLAG configuration.
4. Create the VLANs needed.
5. Add individual port descriptions for troubleshooting.
6. Assign the VLANs and configure jumbo frames and flow control.
7. Configure spanning tree.
8. Configure an MLAG port-channel uplink for the VM hosts (one 2x40 Gbps MLAG port-channel is illustrated as an example).
9. Secure the remaining interfaces.

Task 1: Set up the initial configuration on the HPE M-Series switches

10. Configure the switches (which in this process are assumed to be factory-default configured):
 a. Verify that at initial boot and connection to the serial or console port on the switch, the HPE M-Series setup wizard automatically started and attempted to enter automatic configuration.
 b. Log in as admin and use admin as the password.
 You must enter a password even if reusing the default password.
 c. In configuration-terminal mode, run the following commands on HPE M-Series switch 1:

 Do you want to use the wizard for initial configuration? y

 Step 1: Hostname? [switch-5256f0] net_switch1_mgmt
 Step 2: Use DHCP on mgmt0 interface? [yes] no
 Step 3: Use zeroconf on mgmt0 interface? [no]
 Step 4: Primary IPv4 address and masklen? [0.0.0.0/0]
 Step 5: Default gateway? mgmt_net_gw_IP
 Step 6: Primary DNS server? mgmt_net_DNSA_IP
 Step 7: Domain name? mgmt_net_domain_name
 Step 8: Enable IPv6? [yes]
 Step 9: Enable IPv6 autoconfig (SLAAC) on mgmt0 interface? [no]
 Step 10: Enable DHCPv6 on mgmt0 interface? [yes]
 Step 11: Admin password (Must be typed)? net_switch_admin_password
 Step 11: Confirm admin password? net_switch_admin_password
 Step 12: Monitor password (Must be typed)? net_switch_admin_password
 Step 12: Confirm monitor password? net_switch_admin_password

 The startup wizard should prompt you, if it does not, consider performing a factory reset.
 d. In configuration-terminal mode, run the following commands on HPE M-Series switch 2:
Do you want to use the wizard for initial configuration? y

Step 1: Hostname? [switch-525710] net_switch2_mgmt
Step 2: Use DHCP on mgmt0 interface? [yes] no
Step 3: Use zeroconf on mgmt0 interface? [no]
Step 4: Primary IPv4 address and masklen? [0.0.0.0/0]
Step 5: Default gateway? mgmt_net_gw_IP
Step 6: Primary DNS server? mgmt_net_DNA_IP
Step 7: Domain name? mgmt_net_domain_name
Step 8: Enable IPv6? [yes]
Step 9: Enable IPv6 autoconfig (SLAAC) on mgmt0 interface? [no]
Step 10: Enable DHCPv6 on mgmt0 interface? [yes]
Step 11: Admin password (Must be typed)? net_switch_admin_password
Step 11: Confirm admin password? net_switch_admin_password
Step 12: Monitor password (Must be typed)? net_switch_admin_password
Step 12: Confirm monitor password? net_switch_admin_password

The startup wizard should prompt you; if it does not, consider performing a factory reset.

Task 2: Set up the IPL port-channel and the MLAG configuration

1. Set up the IPL port-channel and configure the MLAG and buffer traffic pools to segregate iSCSI data from other network data.

NOTE

In addition to two switch MGMT0 IP addresses, a third IP address for the MLAG VIP is required in the same subnet as the MGMT0 ports. MLAG requires that the MGMT0 ports on the switches communicate.

a. In configuration-terminal mode, run the following commands on HPE M-Series switch 1:
enable
configuration terminal
ping net_switch2_mgmt ##– verify responses and enter <ctrl> c
ip routing vrf default
ip igmp snooping
protocol mlag
lacc
lldp
logging monitor events notice
cli default auto-logout 60
traffic pool TCP type lossless
traffic pool iscsi type lossless
traffic pool TCP map switch-priority 0
traffic pool iscsi map switch-priority 4
interface ethernet 1/21-1/22 shutdown
interface ethernet 1/21-1/22 speed 40G force #speed 100G is the default
interface ethernet 1/21 description mlag ipl
interface ethernet 1/22 description mlag ipl
dcb priority-flow-control enable
[...]
dcb application-priority tcp iscsi 4
interface ethernet 1/15-1/16 qos trust port
interface ethernet 1/15-1/16 qos rewrite pcp
interface ethernet 1/15-1/16 qos switch-priority 4
interface ethernet 1/2 qos trust port
interface ethernet 1/2 qos default switch-priority 4
interface ethernet 1/2 qos rewrite pcp
interface ethernet 1/2 qos trust port
interface ethernet 1/4 qos rewrite pcp
interface ethernet 1/4 qos trust port
interface ethernet 1/4 qos default switch-priority 4
interface ethernet 1/4 qos rewrite pcp
interface port-channel 10 ipl 1
tenant ipv4 name "MLAG ipl VLAN"
exit
interface vlan 4094 ip address mlag_private_ip1/48 Transnet mask
interface vlan 4094 ip address mlag_private_ip2/48 Transnet mask
ip protocol mlag-vip MLAG-FOO1 ip mlag-vip /48 Transnet mask
interface ethernet 1/21-1/22 no shutdown
no mlag shutdown
write memory
show interface port-channel summary
show mlag
show traffic pool
show buffer pool
b. In configuration-terminal mode, run the following commands on HPE M-Series switch 2:

```
[HPE] enable
[HPE] configuration terminal
[HPE] ip routing vrf default
[HPE] ip igmp snooping
[HPE] protocol mlag
[HPE] lACP
[HPE] lldp
[HPE] logging monitor events notice
[HPE] cli default auto-logout 60
[HPE] traffic pool TCP type lossless
[HPE] traffic pool iscsi type lossless
[HPE] traffic pool TCP map switch-priority 0
[HPE] traffic pool iscsi map switch-priority 4
[HPE] interface ethernet 1/21-1/22 shutdown
[HPE] interface ethernet 1/21-1/22 speed 40G force #speed 100G is the default
[HPE] interface ethernet 1/21 description mlag ipl
[HPE] interface ethernet 1/22 description mlag ipl
[HPE] dcb priority-flow-control enable force
[HPE] dcb application-priority tcp iscsi 4
[HPE] dcb priority-flow-control priority 4 enable
[HPE] interface ethernet 1/15-1/16 qos trust port
[HPE] interface ethernet 1/15-1/16 qos default switch-priority 4
[HPE] interface ethernet 1/15-1/16 qos rewrite pcp
[HPE] interface ethernet 1/2 qos trust port
[HPE] interface ethernet 1/2 qos default switch-priority 4
[HPE] interface ethernet 1/2 qos rewrite pcp
[HPE] interface ethernet 1/4 qos trust port
[HPE] interface ethernet 1/4 qos default switch-priority 4
[HPE] interface ethernet 1/4 qos rewrite pcp
[HPE] interface port-channel 10 ipl 1
[HPE] interface ethernet 1/21-1/22 channel-group 10 mode active
[HPE] interface port-channel 10 dcb priority-flow-control mode on force
[HPE] vlan 4094 name "MLAG ipl VLAN"
[HPE] exit
[HPE] interface vlan 4094 ip address mlag_private_ip2/mlag_private_netmask
[HPE] interface vlan 4094 ipl 1 peer-address mlag_private_ip1
[HPE] mlag-vip MLAG-F001 ip mlag-vip /mlag-netmask force
[HPE] interface ethernet 1/21-1/22 no shutdown
[HPE] no mlag shutdown
[HPE] write memory
[HPE] show interface port-channel summary
[HPE] show mlag
[HPE] show traffic pool
[HPE] show buffer pool
```

NOTE

Switch prompts are not displayed in the remaining steps of this configuration example.

Task 3: Configure NTP

1. Configure the local time and date, and enable NTP.

 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

```
enable
cd
ntp server <<mgmt_net_ntp1>>
ntp enable
write memory
show clock
```
Task 4: Create the VLANs needed

1. Create the required VLANs and the VLAN interfaces needed:

 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```plaintext
   enable
   configuration terminal

   vlan <<mgmt.net_vlan>> name MGMT-VLAN
   exit

   vlan <<iscsi_san_a_vlan>> name iSCSI-SAN-A-VLAN       #iSCSI data VLAN on switch 1 only
   exit

   vlan <<iscsi_san_b_vlan>> name iSCSI-SAN-B-VLAN       #iSCSI data VLAN on switch 2 only
   quit

   vlan <<vm.production_net_1_vlan>> name VM-Production-VLAN1
   exit

   vlan <<dead.net_vlan>> name Dead-Network              #Dead-Network for unused ports
   exit

   write memory
   ```

Task 5: Add individual port descriptions for troubleshooting

1. Add individual port descriptions for troubleshooting activity and verification:

 a. In configuration-terminal mode, run the following commands on HPE M-Series switch 1:

   ```plaintext
   enable
   configuration terminal

   interface ethernet 1/15 description <<nimble1_system_name>>-CA-tg1a
   interface ethernet 1/16 description <<nimble1_system_name>>-CB-tg1a
   interface Ethernet 1/21 description MLAG DO NOT MODIFY
   interface Ethernet 1/22 description MLAG DO NOT MODIFY
   interface ethernet 1/1 description <<mgmt.server_1_hostname>>-Port1
   interface ethernet 1/2 description <<mgmt.server_1_hostname>>-iSCSI-Port1
   interface ethernet 1/3 description <<mgmt.server_2_hostname>>-Port1
   interface ethernet 1/4 description <<mgmt.server_2_hostname>>-iSCSI-Port1
   interface ethernet 1/5 description <<mgmt.server_2_hostname>>-ILO
   interface ethernet 1/7 description <<nimble_system_name>>-MGMT-CA-Port1
   interface ethernet 1/8 description <<nimble_system_name>>-MGMT-CB-Port1
   write memory
   ```

 b. In configuration-terminal mode, run the following commands on HPE M-Series switch 2:

   ```plaintext
   enable
   configuration terminal

   interface ethernet 1/15 description <<nimble1_system_name>>-CA-tg1b
   interface ethernet 1/16 description <<nimble1_system_name>>-CB-tg1b
   interface Ethernet 1/21 description MLAG DO NOT MODIFY
   interface Ethernet 1/22 description MLAG DO NOT MODIFY
   interface ethernet 1/1 description <<mgmt.server_1_hostname>>-Port2
   interface ethernet 1/2 description <<mgmt.server_1_hostname>>-iSCSI-Port2
   interface ethernet 1/3 description <<mgmt.server_2_hostname>>-Port2
   interface ethernet 1/4 description <<mgmt.server_2_hostname>>-iSCSI-Port2
   interface ethernet 1/5 description <<mgmt.server_2_hostname>>-ILO
   interface ethernet 1/7 description <<nimble_system_name>>-MGMT-CA-Port2
   interface ethernet 1/8 description <<nimble_system_name>>-MGMT-CB-Port2
   write memory
   ```
Task 6: Assign the VLANs and configure jumbo frames and flow control

Assign individual VLANs to different ports and configure jumbo frames and flow control.

1. Configure the Management and VM Network VLANs for each HPE ProLiant server in your environment:
 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```
   enable
   configuration terminal
   interface ethernet 1/1-1/18 speed 10G force  #speed 25G is the default
   interface ethernet 1/5 speed 1G force  #ilo speed is a 1G port

   interface ethernet 1/1 switchport mode hybrid
   interface ethernet 1/1 switchport hybrid allowed-vlan none
   interface ethernet 1/1 switchport hybrid allowed-vlan add <<vm_production_net_1_vlan>>
   interface ethernet 1/1 switchport access vlan <<mgmt_net_vlan>>

   interface ethernet 1/3 switchport mode hybrid
   interface ethernet 1/3 switchport hybrid allowed-vlan none
   interface ethernet 1/3 switchport hybrid allowed-vlan add <<vm_production_net_1_vlan>>
   interface ethernet 1/3 switchport access vlan <<mgmt_net_vlan>>
   write memory
   ```

2. Configure management VLANs for the HPE Nimble Storage management interface and server iLo for each management port on your HPE Nimble Storage array:
 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```
   interface ethernet 1/7-1/8 switchport access vlan <<mgmt_net_vlan>>
   interface ethernet 1/5 switchport access vlan <<mgmt_net_vlan>>  #ilo connection to M-series assumed
   write memory
   ```

3. Configure iSCSI VLANs, flow control, and jumbo frames for each HPE ProLiant server in your environment:
 a. In configuration-terminal mode, run the following commands on HPE M-Series switch 1:

   ```
   interface ethernet 1/2
   switchport access vlan <<iscsi_san_a_vlan>>
   flowcontrol receive on force
   flowcontrol send on force
   mtu 9216 force
   no shutdown
   exit

   interface ethernet 1/4
   switchport access vlan <<iscsi_san_a_vlan>>
   flowcontrol receive on force
   flowcontrol send on force
   mtu 9216 force
   no shutdown
   exit
   write memory
   ```
b. In configuration-terminal mode, run the following commands on HPE M-Series switch 2:

```plaintext
interface ethernet 1/2
switchport access vlan <<iscsi_san_b_vlan>>
flowcontrol receive on force
flowcontrol send on force
mtu 9216 force
no shutdown
exit

interface ethernet 1/4
switchport access vlan <<iscsi_san_b_vlan>>
flowcontrol receive on force
flowcontrol send on force
mtu 9216 force
no shutdown
exit
write memory
```

4. Configure iSCSI VLANs, flow control, and jumbo frames for each port on the HPE Nimble Storage array:

a. In configuration-terminal mode, run the following commands on HPE M-Series switch 1:

```plaintext
interface ethernet 1/15-1/16
speed 10G force
switchport access vlan <<iscsi_san_b_vlan>>
flowcontrol receive on force
flowcontrol send on force
mtu 9216 force
no shutdown
exit
write memory
```

b. In configuration-terminal mode, run the following commands on HPE M-Series switch 2:

```plaintext
interface ethernet 1/15-1/16
speed 10G force
switchport access vlan <<iscsi_san_b_vlan>>
flowcontrol receive on force
flowcontrol send on force
mtu 9216 force
no shutdown
exit
write memory
```

Task 7: Configure spanning tree

1. Configure spanning tree for each HPE ProLiant and HPE Nimble Storage interface that is used for iSCSI:

a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

```plaintext
spanning-tree mode pvst
spanning-tree port type edge default
interface ethernet 1/1-1/5 spanning-tree port type edge
interface ethernet 1/7-1/8 spanning-tree port type edge
interface ethernet 1/15-1/16 spanning-tree port type edge
write memory
```

Setting the interfaces to edge ports in spanning tree ensures that if spanning tree is enabled on the switch as part of the configuration, these ports will transition directly to the forwarding state in the spanning tree topology.

Task 8: Uplink into the existing network infrastructure

Depending on your network infrastructure and connectivity requirements, you might use various layer 2 or layer 3 methods to connect the HPE Nimble Storage dHCI solution to the network. This section provides an example of how to create an MLAG port-channel to uplink the HPE M-Series switch to your existing switch environment.
1. Configure one uplink per HPE M-series switch to be aggregated in an MLAG port-channel:
 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```
   interface mlag-port-channel 80
   interface ethernet 1/20 speed 40G force
   interface ethernet 1/20 lacp rate fast #“no lacp rate fast” is slow and depends on upstream switch
   interface ethernet 1/20 mlag-channel-group 80 mode active #“mode on” depends on upstream switch
   interface mlag-port-channel 80 spanning-tree port type edge
   interface mlag-port-channel 80 spanning-tree bpdudfilter enable
   interface mlag-port-channel 80 switchport mode hybrid
   interface mlag-port-channel 80 switchport hybrid allowed-vlan none
   interface mlag-port-channel 80 switchport hybrid allowed-vlan add <<vm_production_net_1_vlan>>
   interface mlag-port-channel 80 switchport access vlan <<mgmt_net_vlan>>
   interface mlag-port-channel 80 flowcontrol send on force
   interface mlag-port-channel 80 flowcontrol receive on force
   interface mlag-port-channel 80 mtu 9216 force #mtu 1520 is the default; depends on upstream switch
   interface mlag-port-channel 80 no shutdown
   show interfaces mlag-port-channel summary
   ```

 Task 9: Secure the remaining interfaces
 1. Secure the rest of the switch by shutting down the unused ports and putting them in your <<dead_net_vlan>>:
 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

      ```
      interface ethernet 1/6 shutdown
      interface ethernet 1/9-1/14 shutdown
      interface ethernet 1/17-1/19 shutdown
      interface ethernet 1/6 switchport mode access
      interface ethernet 1/9-1/14 switchport mode access
      interface ethernet 1/17-1/19 switchport mode access
      interface ethernet 1/6 switchport access vlan <<dead_net_vlan>>
      interface ethernet 1/9-1/14 switchport access vlan <<dead_net_vlan>>
      interface ethernet 1/17-1/19 switchport access vlan <<dead_net_vlan>>
      write memory
      ```

 NOTE
 Save a copy of the configuration file or capture a `show run` output to a text file from each switch for future reference.

 HPE Aruba 8320 or 8325 configuration example
 The following procedures describe how to configure the HPE Aruba 8320 or 8325 switches for use in an HPE Nimble Storage dHCI environment. Before configuring the switches, make sure that they are running the HPE firmware version specified in the HPE Nimble Storage Validated Configuration Matrix. A base HPE Nimble Storage dHCI deployment must use a minimum of two network switches of the same model.

 To configure the HPE Aruba 83xx switches for HPE Nimble Storage dHCI, you must complete the following tasks:

 1. Set up the initial configuration on Aruba 83xx switches 1 and 2.
 2. Set up the virtual switching extension (VSX) configuration.
 3. Configure NTP.
 4. Create the VLANs needed.
 5. Add individual port descriptions for troubleshooting.
 6. Assign the VLANs and configure jumbo frames and flow control.
 7. Configure spanning tree.
 8. Secure the remaining interfaces.
Task 1: Set up the initial configuration on the HPE Aruba 83xx switches

1. Configure HPE Aruba 83xx switch 1:
 a. If you are using serial cable to connect to the console, specify the required speed of 9600 baud.
 b. Interconnect your two switches by using QSFP+ or SFP+, depending on the switch model.
 c. Specify three ports at minimum: two for VSX and one for the VSX keepalive mechanism.

2. Log in as admin and use admin as the password:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 1:

   ```
   8325#config
   8325(config)# user admin password
   8325(config)# interface mgmt
   8325(config)# interface mgmt
   8325(config-if-mgmt)# no shutdown
   8325(config-if-mgmt)# ip static net_switch1_mgmt_ip/mgmt_net_netmask
   8325(config-if-mgmt)# default-gateway mgmt_net_gw
   8325(config-if-mgmt)# exit
   8325(config)# write memory
   ```

3. Configure HPE Aruba 83xx switch 2:
 a. If you are using serial cable to connect to the console, specify the required speed of 9600 baud

4. Log in as admin and use admin as the password:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 2:

   ```
   8325#config
   8325(config)# user admin password
   8325(config)# interface mgmt
   8325(config)# interface mgmt
   8325(config-if-mgmt)# no shutdown
   8325(config-if-mgmt)# ip static net_switch2_mgmt_ip/mgmt_net_netmask
   8325(config-if-mgmt)# default-gateway mgmt_net_gw
   8325(config-if-mgmt)# exit
   8325(config)# write memory
   ```

5. Enable an interface group:
 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```
   8325#config
   8325(config)# system interface-group 1 speed 10g
   8325(config)# system interface-group 2 speed 10g
   8325(config)# system interface-group 3 speed 10g
   8325(config)# system interface-group 4 speed 10g
   8325(config)# write memory
   ```

 Your interface group might differ from what is shown in the example. For more information, see the user guide for your HPE Aruba switch.

NOTE
Switch prompts are not displayed in the remaining steps of this configuration example.
Task 2: Set up the VSX configuration

1. Configure the link aggregation group (LAG) that will be used for VSX:
 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

```
config
interface lag 99
no shutdown
no routing
lacp mode active
vlan trunk native 1 tag
vlan trunk allowed all
int 1/1/48
lag 99
int 1/1/49
lag 99
```

2. Configure an interface to be used for the VSX keepalive connection:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 1:

```
interface 1/1/43
no routing
ip address net_switch1_vsx_ip/vsx_net_netmask
```

 b. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 2:

```
interface 1/1/43
no routing
ip address net_switch2_vsx_ip/vsx_net_netmask
```

3. Configure the VSX role:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 1:

```
config
vsx
role primary exit
write memory
```

 b. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 2:

```
config
vsx
role secondary exit
write memory
```

4. Enable the VSX keepalive interface:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 1:

```
config
vsx
keepalive peer net_switch2_vsx_ip source net_switch1_vsx_ip
exit
write memory
```

 b. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 2:

```
config
vsx
keepalive peer net_switch1_vsx_ip source net_switch2_vsx_ip
exit
write memory
```
5. Verify that VSX is enabled and configured:
 a. In configuration-terminal mode, run the `sh vsx status` command to request a status report:

   ```
   config
   sh vsx status
   VSX Operational State
   -------------------
   ISL channel : In-Sync
   ISL mgmt channel : operational
   Config Sync Status : in-sync
   NAE : peer_reachable
   HTTPS Server : peer_reachable
   Attribute Local Peer
   -------------------
   ISL link lag99 lag99
   ISL version 2 2
   Platform 8325 8325
   Software Version GL.10.02.0001 GL.10.02.0001
   Device Role secondary primary
   ```

Task 3: Configure NTP

1. Configure the local time and date, and enable NTP.
 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```
   config
   ntp server <<mgmt_net_ntp1>>
   ntp enable
   write memory
   ```
Task 4: Create the VLANs needed

1. Create the required VLANs and the VLAN interfaces needed.

 When you create the VLANs on switch 1, the `vsx-sync` command syncs them to switch 2.

 a. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 1:

   ```
   config
   vlan <<mgmt_net_vlan>>
   description MGMT-VLAN
   vsx-sync
   exit

   vlan <<iscsi_san_a_vlan>>
   description iSCSI-SAN-A-VLAN
   vsx-sync
   exit

   vlan <<iscsi_san_b_vlan>>
   description iSCSI-SAN-B-VLAN
   vsx-sync
   exit

   vlan <<vm_production_net_1_vlan>>
   description VM-Production-VLAN1
   vsx-sync
   exit

   vlan <<dead_net_vlan>>
   description Dead-Network for unused ports
   vsx-sync
   exit

   write memory
   ```
Task 5: Add individual port descriptions for troubleshooting

1. Add individual port descriptions for troubleshooting activity and verification:

a. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 1:

```plaintext
config
interface 1/1/15
description <<nimble1_system_name>>-CA-tg1a
exit
interface 1/1/16
description <<nimble1_system_name>>-CB-tg1a
exit
interface 1/1/43
description VSX Keep Alive DO NOT MODIFY
exit
interface 1/1/48
description VSX DO NOT MODIFY
exit
interface 1/1/49
description VSX DO NOT MODIFY
exit
interface 1/1/1
description <<mgmt_server_1_hostname>>-Port1
exit
interface 1/1/2
description <<mgmt_server_1_hostname>>-iSCSI-Port1
exit
interface 1/1/3
description <<mgmt_server_2_hostname>>-Port1
exit
interface 1/1/4
description <<mgmt_server_2_hostname>>-iSCSI-Port1
interface 1/1/7
description <<nimble_system_name>>-MGMT-CA-Port1
exit
interface 1/1/8
description <<nimble_system_name>>-MGMT-CB-Port1
exit
interface 1/1/5
description <<mgmt_server_1_hostname>>-ILO
exit
write memory
```
b. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 2:

```bash
config
interface 1/1/15
description <<nimble1_system_name>>-CA-tg1b
exit
interface 1/1/16
description <<nimble1_system_name>>-CB-tg1b
exit
interface 1/1/43
description VSX Keep Alive DO NOT MODIFY
exit
interface 1/1/48
description VSX DO NOT MODIFY
exit
interface 1/1/49
description VSX DO NOT MODIFY
exit
interface 1/1/1
description <<mgmt_server_1_hostname>>-Port2
exit
interface 1/1/2
description <<mgmt_server_1_hostname>>-iSCSI-Port2
exit
interface 1/1/3
description <<mgmt_server_2_hostname>>-Port2
exit
interface 1/1/4
description <<mgmt_server_2_hostname>>-iSCSI-Port2
interface 1/1/7
description <<nimble_system_name>>-MGMT-CA-Port2
exit
interface 1/1/8
description <<nimble_system_name>>-MGMT-CB-Port2
exit
interface 1/1/5
description <<mgmt_server_2_hostname>>-ILO
exit
write memory
```

Task 6: Assign the VLANs and configure jumbo frames and flow control

Assign individual VLANs to different ports and configure jumbo frames and flow control.

1. Configure the **Management** and **VM Network** VLANs for each HPE ProLiant server in your environment:

 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

```bash
config
interface 1/1/1
no routing
vlan trunk native <<mgmt_net_vlan>>
exit
interface 1/1/3
no routing
vlan trunk native <<mgmt_net_vlan>>
exit
write memory
```
2. Configure management VLANs for the HPE Nimble Storage management interface for each management port on your HPE Nimble Storage array:
 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

```bash
config
interface 1/1/7
no routing
vlan access <<mgmt_net_vlan>>
exit
interface 1/1/8
no routing
vlan access <<mgmt_net_vlan>>
exit
write memory
```

3. Configure management VLANs for the HPE ProLiant server iLO interface for each iLO port in your environment:
 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

```bash
config
interface 1/1/5
no routing
  vlan access <<mgmt_net_vlan>>
exit
write memory
```

4. Configure iSCSI VLANs, flow control, and jumbo frames for each HPE ProLiant server in your environment:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 1:

```bash
config
interface 1/1/2
no routing
  vlan access <<iscsi_san_a_vlan>>
  flow-control rx
  mtu 9198
interface 1/1/4
no routing
  vlan access <<iscsi_san_a_vlan>>
  flow-control rx
  mtu 9198
exit
```

b. In configuration-terminal mode, run the following commands on HPE Aruba 83xx switch 2:

```bash
config
interface 1/1/2
no routing
  vlan access <<iscsi_san_b_vlan>>
  flow-control rx
  mtu 9198
interface 1/1/4
no routing
  vlan access <<iscsi_san_a_vlan>>
  flow-control rx
  mtu 9198
exit
write memory
```
5. Configure iSCSI VLANs, flow control, and jumbo frames for each port on your HPE Nimble Storage array:
 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```
   config
   interface 1/1/15
   no routing
   vlan access <<iscsi_san_a_vlan>>
   flow-control rx
   mtu 9198
   interface 1/1/16
   no routing
   vlan access <<iscsi_san_b_vlan>>
   flow-control rx
   mtu 9198
   exit
   write memory
   ```

 Task 7: Configure spanning tree

 Setting the interfaces to edge ports in spanning tree ensures that if spanning tree is enabled on the switch as part of the configuration, these ports directly transition to the forwarding state in the spanning tree topology.

 1. Configure spanning tree for each HPE ProLiant server and HPE Nimble Storage interface that is used for iSCSI:
 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```
   spanning-tree mode cpvst
   interface 1/1/2
   spanning-tree port-type admin-edge
   interface 2/1/2
   spanning-tree port-type admin-edge
   interface 1/1/4
   spanning-tree port-type admin-edge
   interface 2/1/4
   spanning-tree port-type admin-edge
   interface 1/1/15
   spanning-tree port-type admin-edge
   interface 2/1/15
   spanning-tree port-type admin-edge
   interface 1/1/16
   spanning-tree port-type admin-edge
   interface 2/1/16
   spanning-tree port-type admin-edge
   write memory
   ```

 Task 8: Secure the remaining interfaces

 1. Secure the rest of the switch by shutting down the unused ports and putting them into your <<dead_net_vlan>>:
 a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```
   config
   interface 1/1/9-1/1/14
   no routing
   vlan access <<dead_net_vlan>>
   write memory
   ```
HPE Aruba 6300 configuration example

The following procedures describe how to configure the HPE Aruba 6300 switches for use in an HPE Nimble Storage dHCI environment. Before configuring the switches, make sure that they are running the HPE firmware version specified in the HPE Nimble Storage Validated Configuration Matrix. A base HPE Nimble Storage dHCI deployment must use a minimum of two network switches of the same model.

To configure the HPE Aruba 6300 switches for HPE Nimble Storage dHCI, you must complete the following tasks:

2. Set up the initial configuration on Aruba 6300 switches 1 and 2.
3. Set up the virtual switching framework (VSF) configuration.
4. Configure NTP.
5. Create the VLANs needed.
6. Add individual port descriptions for troubleshooting.
7. Assign the VLANs and configure jumbo frames and flow control.
8. Configure spanning tree.
9. Secure the remaining interfaces.

Task 1: Set up the initial configuration on HPE Aruba 6300 switches

1. Configure HPE Aruba 6300 switch 1:
 a. If you are using serial cable to connect to the console, specify the required speed of 9600 baud.
 b. Interconnect your two switches by using QSFP+ or SFP+, depending on the switch model.
 c. Specify two ports for VSF.

2. Log in as admin and use admin as the password:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 6300 switch 1:

```plaintext
6300#config
6300(config)#user admin password
6300(config)# interface mgmt
6300(config-if-mgmt)# no shutdown
6300(config-if-mgmt)# ip static net_switch1_mgmt_ip/mgmt_net_netmask
6300(config-if-mgmt)# default-gateway mgmt_net_gw
6300(config-if-mgmt)# exit
6300(config)# write memory
```

3. Configure HPE Aruba 6300 switch 2:
 a. If you are using serial cable to connect to the console, specify the required speed of 9600 baud.

4. Log in as admin and use admin as the password:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 6300 switch 2:

```plaintext
6300#config
6300(config)#user admin password
6300(config)# interface mgmt
6300(config)# interface mgmt
6300(config-if-mgmt)# no shutdown
6300(config-if-mgmt)# ip static net_switch2_mgmt_ip/mgmt_net_netmask
6300(config-if-mgmt)# default-gateway mgmt_net_gw
6300(config-if-mgmt)# exit
6300(config)# write memory
```

NOTE

Switch prompts are not displayed in the remaining steps of this configuration example.
Task 2: Set up the VSF configuration

5. Configure the ports that will be used for VSF:

 a. In configuration-terminal mode, run the following commands on HPE Aruba 6300 switch 1:
   ```
   configure
   vsf member 1
   link 1 1/1/25
   link 2 1/1/26
   ```

 b. In configuration-terminal mode, run the following commands on HPE Aruba 6300 switch 2:
   ```
   configure
   vsf member 2
   link 1 1/1/25
   link 2 1/1/26
   exit
   vsf renumber-to 2
   ```

 The switch reboots after it executes the `renumber` command. This action causes the second switch (member 2) to join the stack if VSF link cables are connected, with the first switch (member 1) as the master.

6. Verify that the second switch (member 2) is now linked, with the first switch (member 1) as the master:

 a. In configuration-terminal mode, run the `show vsf` command on the first switch (member 1):
   ```
   switch# show vsf
   MAC Address               : 38:21:c7:5d:d0:c0
   Secondary                 :
   Topology                  : Ring
   Status                    : No Split
   Split Detection Method    : None
   Mbr Mac Address          type          Status
   ID                       ---------------  ---------------  -----------------  ---------
   1   38:21:c7:5d:d0:c0   JL668A         Master
   2   38:21:c7:6a:10:c0   JL668A         Member
   ```

 NOTE

 Because the two switches were linked in step 1, the remaining configuration tasks are performed only on HPE Aruba 6300 switch 1.

7. Configure VSF split detection:

 a. In configuration-terminal mode, run the following command on HPE Aruba 6300 switch 1:
   ```
   vsf split-detect mgmt
   ```

Task 3: Configure NTP

1. Configure the local time and date, and enable NTP:

 a. In configuration-terminal mode, run the following commands on HPE Aruba 6300 switch 1:
   ```
   config
   ntp server <<gmt_net_ntp1>>
   ntp enable
   write memory
   ```
Task 4: Create the VLANs needed

1. Create the required VLANs and the VLAN interfaces needed:

a. In configuration-terminal mode, run the following commands on HPE Aruba 6300 switch 1:

   ```
   vlan <<mgmt_net_vlan>>
   description MGMT-VLAN
   exit

   vlan <<iscsi_san_a_vlan>>
   description iSCSI-SAN-A-VLAN
   exit

   vlan <<iscsi_san_b_vlan>>
   description iSCSI-SAN-B-VLAN
   exit

   vlan <<vm_production_net_1_vlan>>
   description VM-Production-VLAN1
   exit

   vlan <<dead_net_vlan>>
   description Dead-Network for unused ports
   exit

   write memory
   ```

Task 5: Add individual port descriptions for troubleshooting

1. Add individual port descriptions for troubleshooting activity and verification:

 a. In configuration-terminal mode, run the following commands on Aruba 6300 switch 1:

   ```
   interface 1/1/15
   description <<nimble1_system_name>>-CA-tg1a
   exit

   interface 2/1/15
   description <<nimble1_system_name>>-CA-tg1b
   exit

   interface 1/1/16
   description <<nimble1_system_name>>-CB-tg1a
   exit

   interface 2/1/16
   description <<nimble1_system_name>>-CB-tg1b
   exit

   interface 1/1/25
   description VSF DO NOT MODIFY
   exit

   interface 1/1/26
   description VSF DO NOT MODIFY
   exit

   interface 2/1/25
   description VSF DO NOT MODIFY
   exit

   interface 2/1/26
   description VSF DO NOT MODIFY
   exit

   interface 1/1/1
   description <<mgmt_server_1_hostname>>-Port1
   exit

   interface 1/1/2
   description <<mgmt_server_1_hostname>>-iSCSI-Port1
   exit

   interface 2/1/1
   description <<mgmt_server_1_hostname>>-Port2
   exit

   ```
interface 2/1/2
description <<mgmt_server_1_hostname>>-iSCSI-Port2
exit
interface 1/1/3
description <<mgmt_server_2_hostname>>-Port1
exit
interface 1/1/4
description <<mgmt_server_2_hostname>>-iSCSI-Port1
exit
interface 2/1/3
description <<mgmt_server_2_hostname>>-Port2
exit
interface 2/1/4
description <<mgmt_server_2_hostname>>-iSCSI-Port2
exit
interface 1/1/5
description <<mgmt_server_1_hostname>>-ILO
exit
interface 2/1/5
description <<mgmt_server_2_hostname>>-ILO
exit
interface 1/1/7
description <<nimble_system_name>>-MGMT-CTRLA-Port1
exit
interface 2/1/7
description <<nimble_system_name>>-MGMT-CTRLB-Port1
exit
interface 1/1/8
description <<nimble_system_name>>-MGMT-CTRLA-Port2
exit
interface 2/1/8
description <<nimble_system_name>>-MGMT-CTRLB-Port2
exit
Task 6: Assign the VLANs and configure jumbo frames and flow control

Assign individual VLANs to different ports and configure jumbo frames and flow control.

1. Configure Management and VM Network VLANs for each HPE ProLiant server in your environment:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 6300 switch 1, adjusting the ports as needed:

   ```
   config
   interface 1/1/1
   no routing
   vlan trunk native <<mgmt_net_vlan>>
   vlan trunk allowed <<vm_production_net_1_vlan>>
   exit

   interface 1/1/3
   no routing
   vlan trunk native <<mgmt_net_vlan>>
   vlan trunk allowed <<vm_production_net_1_vlan>>
   write memory

   interface 2/1/1
   no routing
   vlan trunk native <<mgmt_net_vlan>>
   vlan trunk allowed <<vm_production_net_1_vlan>>
   exit

   interface 2/1/3
   no routing
   vlan trunk native <<mgmt_net_vlan>>
   vlan trunk allowed <<vm_production_net_1_vlan>>
   exit

   write memory
   ```

2. Configure management VLANs for the HPE Nimble Storage management interface for each management port on your HPE Nimble Storage array:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 6300 switch 1, adjusting the ports as needed:

   ```
   config
   interface 1/1/7
   no routing
   vlan access <<mgmt_net_vlan>>
   exit

   interface 2/1/7
   no routing
   vlan access <<mgmt_net_vlan>>
   exit

   interface 1/1/8
   no routing
   vlan access <<mgmt_net_vlan>>
   exit

   interface 2/1/8
   no routing
   vlan access <<mgmt_net_vlan>>
   exit

   write memory
   ```
3. Configure management VLANs for the HPE ProLiant server iLO interface for each iLO port in your environment:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 6300 switch 1, adjusting the ports as needed:

   ```
   config
   interface 1/1/5
   no routing
   vlan access <<mgmt_net_vlan>>
   exit
   interface 2/1/5
   no routing
   vlan access <<mgmt_net_vlan>>
   exit

   write memory
   ```

4. Configure iSCSI VLANs, flow control, and jumbo frames for each HPE ProLiant server in your environment:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 6300 switch 1, adjusting the ports as needed:

   ```
   config
   interface 1/1/2
   no routing
   vlan access <<iscsi_san_a_vlan>>
   flow-control rxtx
   mtu 9198
   exit
   interface 2/1/2
   no routing
   vlan access <<iscsi_san_a_vlan>>
   flow-control rxtx
   mtu 9198

   interface 2/1/4
   no routing
   vlan access <<iscsi_san_b_vlan>>
   flow-control rxtx
   mtu 9198

   interface 2/1/4
   no routing
   vlan access <<iscsi_san_b_vlan>>
   flow-control rxtx
   mtu 9198

   write memory
   ```
5. Configure iSCSI VLANs, flow control, and jumbo frames for each port on your HPE Nimble Storage array:

 a. In configuration-terminal mode, run the following commands on HPE Aruba 6300 switch 1, adjusting the ports as needed:

   ```
   config
   interface 1/1/15
   no routing
   vlan access <<iscsi_san_a_vlan>>
   flow-control rxtx
   mtu 9198
   exit
   
   interface 2/1/15
   no routing
   vlan access <<iscsi_san_a_vlan>>
   flow-control rxtx
   mtu 9198
   exit
   
   config
   interface 1/1/16
   no routing
   vlan access <<iscsi_san_b_vlan>>
   flow-control rxtx
   mtu 9198
   exit
   
   interface 2/1/16
   no routing
   vlan access <<iscsi_san_b_vlan>>
   flow-control rxtx
   mtu 9198
   exit
   
   write memory
   ```

Task 7: Configure spanning tree

1. Configure spanning tree on each HPE ProLiant and HPE Nimble Storage interface that is used for iSCSI:

 a. In configuration-terminal mode, run the following commands on Aruba 6300 switch 1:

   ```
   spanning-tree mode cpvst
   interface 1/1/2
   spanning-tree port-type admin-edge
   interface 2/1/2
   spanning-tree port-type admin-edge
   interface 1/1/4
   spanning-tree port-type admin-edge
   interface 2/1/4
   spanning-tree port-type admin-edge
   interface 1/1/15
   spanning-tree port-type admin-edge
   interface 2/1/15
   spanning-tree port-type admin-edge
   interface 1/1/16
   spanning-tree port-type admin-edge
   interface 2/1/16
   spanning-tree port-type admin-edge
   
   write memory
   ```

Setting the interfaces to edge ports in spanning tree ensures that if spanning tree is enabled on the switch as part of the configuration, these ports directly transition to the forwarding state in the spanning tree topology.
Task 8: Secure the remaining interfaces
1. Secure the rest of the switch by shutting down the unused ports and putting them into your `<<dead_net_vlan>>`:
 a. In configuration-terminal mode, run the following commands on HPE Aruba 6300 switch 1:

   ```
   config
   interface 1/1/9-1/1/14
   no routing
   vlan access <<dead_net_vlan>>
   write memory
   ```

HPE FlexFabric configuration example
This section describes how to configure HPE FlexFabric switches for use in the HPE Nimble Storage dHCI environment. Before configuring the switches, make sure that they are running the version of HPE Comware that is specified in the HPE Nimble Storage Validated Configuration Matrix. A base HPE Nimble Storage dHCI deployment must use a minimum of two network switches of the same model.

Although the following example uses HPE FlexFabric 5700, it can easily be adapted to a different HPE FlexFabric model by adjusting the ports accordingly.

To configure the HPE FlexFabric switches for HPE Nimble Storage dHCI, you must complete the following tasks:
1. Set up the initial configuration on HPE FlexFabric switches 1 and 2.
2. Set up the IRF configuration.
3. Configure multi-active detection (MAD) and remote access to the switch.
4. Configure the IRF priority.
5. Configure a local user and enable SSH.
6. Configure NTP.
7. Create the VLANs needed.
8. Configure the management interface.
9. Specify the switch name.
10. Convert the chassis working mode.
11. Add individual port descriptions for troubleshooting.
12. Assign the VLANs and configure jumbo frames and flow control.
13. Configure spanning tree.
14. Secure the remaining interfaces.
15. Uplink into the existing network infrastructure.

Task 1: Set up the initial configuration on HPE FlexFabric switches
1. Set up the initial configuration on HPE FlexFabric switches 1 and 2 through the serial port:
 b. If you are using serial cable to connect to the console, specify the required speed of 9600 baud.
 c. Interconnect the two switches by using QSFP+ or SFP+, depending on the switch model.
 d. Verify that at initial boot and connection to the serial or console port on the switch, the HPE Comware setup automatically started and attempted to enter automatic configuration.
 e. When the instructions call for network configuration in the system-view context, if you are at the `<HPE>` prompt, run the `system-view` command to get to the `[HPE]` prompt.
f. Run automatic configuration on both HPE FlexFabric switches.

Startup configuration file does not exist.
Started automatic configuration, press CTRL_C or CTRL_D to break.

Automatic configuration attempt: 1.
Not ready for automatic configuration: no interface available.
Waiting for the next...

Automatic configuration attempt: 2.
Interface used: M-GigabitEthernet0/0/0.
Enable DHCP client on M-GigabitEthernet0/0/0.
Automatic configuration is aborted.

Line aux0 is available. Press ENTER to get started. <HPE> system-view
System View: return to User View with Ctrl+Z.

Task 2: Set up the IRF configuration

Set up the initial IRF configuration for the HPE FlexFabric switches 1 and 2 through the serial port.

1. Configure the IRF ports on HPE FlexFabric switch 1.

```plaintext
[HPE] interface range FortyGigE 1/0/41 to FortyGigE 1/0/42
[HPE-if-range] shutdown
[HPE-if-range] quit

[HPE] irf-port 1/1
[HPE-irf-port1/1] port group interface FortyGigE 1/0/41
[HPE-irf-port1/1] port group interface FortyGigE 1/0/42
[HPE-irf-port1/1] quit
[HPE] save
```

The current configuration will be written to the device. Are you sure? [Y/N]: y
Please input the file name(*.cfg)[flash:/startup.cfg]
(To leave the existing filename unchanged, press the Enter key):

```plaintext
[HPE] irf member 1 renumber 2
Renumbering the member ID may result in configuration change or loss. Continue?[Y/N]: y

[HPE] save
The current configuration will be written to the device. Are you sure? [Y/N]: y
Please input the file name(*.cfg)[flash:/startup.cfg]
(To leave the existing filename unchanged, press the enter key):
Validating file. Please wait...
Saved the current configuration to mainboard device successfully.
[HPE] quit
[HPE] reboot
Start to check configuration with next startup configuration file, please wait...........DONE!
This command will reboot the device. Continue? [Y/N]: y
Now rebooting, please wait...
```
3. When the switch reboot is complete, configure the IRF ports on HPE FlexFabric switch 2.

```plaintext
<<HPE>> system-view
[HPE] interface range FortyGigE 2/0/41 to FortyGigE 2/0/42
[HPE-if-range] shutdown
[HPE-if-range] quit
[HPE] irf-port 2/2
[HPE-irf-port2/2] port group interface FortyGigE 2/0/41
[HPE-irf-port2/2] port group interface FortyGigE 2/0/42
[HPE-irf-port2/2] quit
[HPE] irf-port-configuration active
[HPE] interface range FortyGigE 2/0/41 to FortyGigE 2/0/42
[HPE-if-range] undo shutdown
[HPE-if-range] quit
[HPE] save
The current configuration will be written to the device. Are you sure? [Y/N]: y
```

4. Back on HPE FlexFabric switch 1, enable the IRF ports and allow switch 2 to reboot to merge into the IRF fabric.

```plaintext
<<HPE>> system-view
[HPE] irf-port-configuration active
[HPE] interface range FortyGigE 1/0/41 to FortyGigE 1/0/42
[HPE-if-range] undo shutdown
[HPE-if-range] quit
```

5. Wait for HPE FlexFabric switch 2 to reboot.

NOTE
From this point on, all configuration is performed only on switch 1. No further configuration is needed on switch 2 because the control and management planes have been merged as a part of the IRF configuration.

Task 3: Configure MAD and remote access to the switch
Hewlett Packard Enterprise recommends that you implement a MAD mechanism to detect the presence of multiple identical IRF fabrics, handle collisions, and recover from faults in the unlikely event of an IRF split or failure. For more information, see the [HPE FlexFabric 5700 IRF Configuration Guide](#). This guide uses the management links to configure the MAD Bidirectional Forwarding Detection (BFD) network protocol.

1. In system-view, run the following commands on HPE FlexFabric switch 1, substituting the values from the configuration worksheet:

```plaintext
interface M-GigabitEthernet 0/0/0
mad bfd enable
mad ip address <<net_switch1_mad_ip>> <<mad_net_netmask>> member 1
mad ip address <<net_switch2_mad_ip>> <<mad_net_netmask>> member 2
quit
ip route-static 0.0.0.0 0.0.0.0 0.0.0.0 <<mgmt_net_gw>>
```

MAD IP addresses must be in a different subnet from the rest of the solution management. You cannot assign IP addresses for MAD or management by using the management port on the same subnet as the rest of the solution.

NOTE
Switch prompts are not displayed in the remaining steps of this configuration example.
Task 4: Configure the IRF priority
1. Configure the domain and IRF parameters.

 The \(<\text{net_switch_domain_id}>\) value is an arbitrary number, but it must be unique from other IRF domains.

 a. In system-view, run the following IRF commands on HPE FlexFabric switch 1:

```
irf domain <net_switch_domain_id>
irf member 1 priority 32
irf member 2 priority 30
irf mac-address persistent always
```

Task 5: Configure a local user and enable SSH
To secure access to the switch and provide remote access, you must create a local user and enable SSH.

1. Create the local administrator user and configure the virtual console and physical console ports for user name and password authentication:

 a. In system-view, run the following commands on HPE FlexFabric switch 1:

```
local-user admin
password simple <net_switch_admin_password>
authorization-attribute user-role network-admin
service-type ssh terminal
quit
user-interface vty 0 63
authentication-mode scheme
protocol inbound ssh
quit
user-interface aux 0 1
authentication-mode scheme
quit
save
```

2. Create the public keys and enable SSH on the switch:

 a. In system-view, run the following commands on HPE FlexFabric switch 1:

```
public-key local create rsa
Input the modulus length [default = 1024]: 2048

public-key local create dsa
Input the modulus length [default = 1024]: 2048

public-key local create ecdsa secp256r1
ssh server enable
save
```

Task 6: Configure NTP
1. Configure the local time and date, and enable NTP:

 a. In system-view, run the following commands on HPE FlexFabric switch 1:

```
clock protocol none
return

clock datetime time<formatted as hh:mm:ss> date<formatted as MM/DD/YYYY>
system-view

ntp-service unicast-server <mgmt_net_ntp1> priority
```

```
Task 7: Create the VLANs needed
1. Create the required VLANs and the VLAN interfaces needed:
   a. In system-view, run the following commands on HPE FlexFabric switch 1:

   ```
 vlan <<mgmt_net_vlan>>
 name MGMT-VLAN
 quit

 vlan <<iscsi_san_a_vlan>>
 name iSCSI-SAN-A-VLAN
 quit

 vlan <<iscsi_san_b_vlan>>
 name iSCSI-SAN-B-VLAN
 quit

 vlan <<vm_production_net_1_vlan>>
 name VM-Production-VLAN
 quit

 vlan <<dead_net_vlan>>
 name Dead-Network For unused ports?
 quit
   ```

Task 8: Configure the management interface
1. Configure the management interface to enable you to use SSH to manage the switch:
   a. In system-view, run the following commands on HPE FlexFabric switch 1:

   ```
 interface M-GigabitEthernet0/0/0
 ip address <<net_switch1_mgmt_ip>><<mgmt_net_netmask>>
 ip route-static 0.0.0.0 0.0.0.0 <<mgmt_net_gw>>
 save
   ```

Task 9: Specify the switch name
You must set the switch name of the compute switch IRF to uniquely identify it. Changing the switch name changes the prompt from HPE to <<net_switch1_hostname>>.

1. SSH to the switch by using <<net_switch1_mgmt_ip>>, the user name admin, and the password <<net_switch_admin_password>>.
2. Set the switch name:
   a. In system-view, run the following commands on HPE FlexFabric switch 1:

   ```
 sysname <<net_switch1_hostname>>
 save
   ```

Task 10: Convert the chassis working mode
To configure the interfaces and the switch to use iSCSI, you must convert the system working mode. Before running the commands, make sure that both switches are merged into the IRF fabric.

1. Convert the chassis working mode:
   a. In system-view, run the following command on HPE FlexFabric switch 1:

   ```
 system-working-mode advance
 Do you want to change the system working mode? [Y/N]:y
   ```

   The system working mode is changed, please save the configuration and reboot the system to make it effective.

   ```
 return'
 save
 reboot
   ```
Task 11: Add individual port descriptions for troubleshooting

1. Add individual port descriptions for troubleshooting activity and verification:
   
   a. In system-view, run the following commands on HPE FlexFabric switch 1:

```plaintext
interface Ten-GigabitEthernet 1/0/15
description <<nimble1_system_name>>-CA-tg1a
quit

interface Ten-GigabitEthernet 1/0/16
description <<nimble1_system_name>>-CB-tg1a
quit

interface Ten-GigabitEthernet 2/0/15
description <<nimble1_system_name>>-CA-tg1b
quit

interface Ten-GigabitEthernet 2/0/16
description <<nimble1_system_name>>-CB-tg1b
quit

interface range FortyGigE 1/0/41 to FortyGigE 1/0/42 FortyGigE 2/0/41 to FortyGigE 2/0/42
description IRF DO NOT MODIFY
quit

interface Ten-GigabitEthernet 1/0/1
description <<mgmt_server_1_hostname>>-Port1
quit

interface Ten-GigabitEthernet 1/0/2
description <<mgmt_server_1_hostname>>-iSCSI-Port1
quit

interface Ten-GigabitEthernet 2/0/1
description <<mgmt_server_1_hostname>>-Port2
quit

interface Ten-GigabitEthernet 2/0/2
description <<mgmt_server_1_hostname>>-iSCSI-Port2
quit

interface Ten-GigabitEthernet 1/0/3
description <<mgmt_server_2_hostname>>-Port1
quit

interface Ten-GigabitEthernet 1/0/4
description <<mgmt_server_2_hostname>>-iSCSI-Port1
quit

interface Ten-GigabitEthernet 2/0/3
description <<mgmt_server_2_hostname>>-Port2
quit

interface Ten-GigabitEthernet 2/0/4
description <<mgmt_server_2_hostname>>-iSCSI-Port2
quit

interface Ten-GigabitEthernet 1/0/5
description <<mgmt_server_1_hostname>>-ILO
quit

interface Ten-GigabitEthernet 2/0/5
description <<mgmt_server_2_hostname>>-ILO
quit

interface Ten-GigabitEthernet 1/0/7
description <<nimble_system_name>>-MGMT-CA-Port1
quit

interface Ten-GigabitEthernet 1/0/8
description <<nimble_system_name>>-MGMT-CB-Port1
quit

interface Ten-GigabitEthernet 2/0/7
description <<nimble_system_name>>-MGMT-CA-Port2
quit

interface Ten-GigabitEthernet 2/0/8
description <<nimble_system_name>>-MGMT-CB-Port2
quit
```
Task 12: Assign the VLANs and configure jumbo frames and flow control

Assign individual VLANs to different ports and configure jumbo frames and flow control.

1. Configure the Management and VM network VLANs on each HPE ProLiant server in your environment:
   a. In system-view, run the following commands on HPE FlexFabric switch 1:


```plaintext
interface ethernet Ten-GigabitEthernet 1/0/18
 port link-type trunk
 undo port trunk permit vlan 1
 port trunk permit vlan <<mgmt_net_vlan>> <<vm_production_net_1_vlan>>
 port trunk pvid vlan <<mgmt_net_vlan>>
 quit

interface Ten-GigabitEthernet 1/0/3
 port link-type trunk
 undo port trunk permit vlan 1
 port trunk permit vlan <<mgmt_net_vlan>> <<vm_production_net_1_vlan>>
 port trunk pvid vlan <<mgmt_net_vlan>>
 quit

interface ethernet Ten-GigabitEthernet 2/0/18
 port link-type trunk
 undo port trunk permit vlan 1
 port trunk permit vlan <<mgmt_net_vlan>> <<vm_production_net_1_vlan>>
 port trunk pvid vlan <<mgmt_net_vlan>>
 quit

interface ethernet Ten-GigabitEthernet 2/0/3
 port link-type trunk
 undo port trunk permit vlan 1
 port trunk permit vlan <<mgmt_net_vlan>> <<vm_production_net_1_vlan>>
 port trunk pvid vlan <<mgmt_net_vlan>>
 quit

save

interface range Ten-GigabitEthernet 1/0/7 to Ten-GigabitEthernet 1/0/8
 port access vlan <<mgmt_net_vlan>>
 quit

interface range Ten-GigabitEthernet 2/0/7 to Ten-GigabitEthernet 2/0/8
 port access vlan <<mgmt_net_vlan>>
 quit
save
```

2. Configure management VLANs for the HPE Nimble Storage management interface:
   a. In system-view, run the following commands on HPE FlexFabric switch 1 for each management port on your HPE Nimble Storage array:

```plaintext
interface range Ten-GigabitEthernet 1/0/7 to Ten-GigabitEthernet 1/0/8
 port access vlan <<mgmt_net_vlan>>
 quit

interface range Ten-GigabitEthernet 2/0/7 to Ten-GigabitEthernet 2/0/8
 port access vlan <<mgmt_net_vlan>>
 quit
save
```
3. Configure iSCSI VLANs and flow control for each HPE ProLiant server in your environment:
   a. In system-view, run the following commands on HPE FlexFabric switch 1:

   ```
 interface ethernet Ten-GigabitEthernet 1/0/2
 port access vlan <<iscsi_san_a_vlan>>
 flow-control
 quit
 interface ethernet Ten-GigabitEthernet 1/0/4
 port access vlan <<iscsi_san_a_vlan>>
 flow-control
 quit
 interface ethernet Ten-GigabitEthernet 2/0/2
 port access vlan <<iscsi_san_b_vlan>>
 flow-control
 quit
 interface ethernet Ten-GigabitEthernet 2/0/4
 port access vlan <<iscsi_san_b_vlan>>
 flow-control
 quit
 save
   ```

4. Configure iSCSI VLANs and flow control for each port on your HPE Nimble Storage array:
   a. In system-view, run the following commands on HPE FlexFabric switch 1:

   ```
 interface range Ten-GigabitEthernet 1/0/15 to Ten-GigabitEthernet 1/0/16
 port access vlan <<iscsi_san_a_vlan>>
 flow-control
 quit
 interface range Ten-GigabitEthernet 2/0/15 to Ten-GigabitEthernet 2/0/16
 port access vlan <<iscsi_san_b_vlan>>
 flow-control
 quit
 save
   ```

**Task 13: Configure spanning tree**

To optimize the flow of storage traffic though the switches, it is best to configure flow control on the switch. Also, setting the interfaces to edge ports in spanning tree ensures that if spanning tree is enabled on the switch as part of the configuration, these ports directly transition to the forwarding state in the spanning tree topology.

1. Configure spanning tree on each HPE ProLiant server and HPE Nimble Storage interface that is used for iSCSI:
   a. In system-view, run the following commands on HPE FlexFabric switch 1:

   ```
 burst-mode enable
 interface range Ten-GigabitEthernet 1/0/15 to Ten-GigabitEthernet 1/0/16 Ten-GigabitEthernet 2/0/15 to Ten-GigabitEthernet 2/0/16
 stp edged-port
 interface ethernet Ten-GigabitEthernet 1/0/2
 stp edged-port
 interface ethernet Ten-GigabitEthernet 1/0/4
 stp edged-port
 interface ethernet Ten-GigabitEthernet 2/0/2
 stp edged-port
 interface ethernet Ten-GigabitEthernet 2/0/4
 stp edged-port
 quit
 save
   ```
Task 14: Secure the remaining interfaces
1. Secure the rest of the switch by shutting down the unused ports and putting them into your \texttt{<dead_net_vlan>}: 
   a. In system-view, run the following commands on HPE FlexFabric switch 1:

   
   ```
 interface range Ten-GigabitEthernet 1/2/9 Ten-GigabitEthernet 1/2/9 to Ten-GigabitEthernet 1/2/14
 port access vlan \texttt{<dead_net_vlan>}
 shutdown
 quit
 save
   ```

Task 15: Uplink into the existing network infrastructure
Depending on your network infrastructure and connectivity requirements, you might use various layer 2 or layer 3 methods to connect the HPE Nimble Storage dHCI solution to the network. If you have layer 2 connectivity, Hewlett Packard Enterprise recommends that you use bridge aggregations to uplink the HPE FlexFabric Series switches in the HPE Nimble Storage dHCI solution environment into the network infrastructure.

Cisco Nexus configuration example
This section describes how to configure the Cisco Nexus switches for use in the HPE Nimble Storage dHCI environment. Before configuring the switches, make sure they are running the version of Cisco Nexus OS that is specified in the HPE Nimble Storage Validated Configuration Matrix. A base HPE Nimble Storage dHCI deployment must use a minimum of two network switches of the same model.

The following example uses Cisco Nexus 3000 Series switches. It can easily be adapted to a different model of Cisco Nexus by adjusting the ports accordingly.

To configure the Cisco Nexus switches for HPE Nimble Storage dHCI, you must complete the following tasks:
1. Set up the initial configuration on Cisco Nexus switches 1 and 2.
2. Enable the license.
3. Configure NTP.
4. Create the VLANs needed.
5. Add individual port descriptions for troubleshooting.
6. Assign the VLANs and configure jumbo frames and flow control.
7. Create port-channels.
8. Configure virtual port-channels (vPCs).
9. Confirm that the vPC is active
10. Secure the remaining interfaces.
11. Uplink into the existing network infrastructure.
Task 1: Set up the initial configuration on Cisco Nexus switches
1. Set up the initial configuration for Cisco Nexus switches 1 and 2 through the serial port:
   a. If you are using serial cable to connect to the console, specify the required speed of 9600 baud.
   b. Interconnect your two switches by using QSFP+ or SFP+, depending on the switch model.
   c. Verify that at initial boot and connection to the serial or console port on the switch, the NX-OS setup automatically starts and attempts to enter **Power on Auto Provisioning**.
   d. In configuration-terminal mode, run the following commands on Cisco Nexus switch 1:

```
Abort Auto Provisioning and continue with normal setup? [yes/no] [n]: yes
Disabling POAP

---- System Admin Account Setup ----
Do you want to enforce secure password standard [yes/no] [y]: yes
Enter the password for "admin": <<net_switch_admin_password>>
Confirm the password for "admin": <<net_switch_admin_password>>

---- Basic System Configuration Dialog VDC: 1 ----
This setup utility will guide you through the basic configuration of the system.
Setup configures only enough connectivity for management of the system.

Would you like to enter the basic configuration dialog [yes/no]: yes
Create another login account [yes/no] [n]: Enter
Configure read-only SNMP community string [yes/no] [n]: yes

Enter the switch name: <<net_switch1_hostname>>
Continue with Out-of-band (mgmt0) management configuration? [yes/no] [y]: Enter
 Mgmt0 IPV4 address: <<net_switch1_mgmt_ip>>
 Mgmt0 IPV4 netmask: <<mgmt_net_netmask>>
 IPv4 address of the default gateway: <<mgmt_net_gw>>

Configure advanced IP options? [yes/no] [n]: Enter
Enable the telnet service? [yes/no] [n]: Enter
Enable the ssh service? [yes/no] [y]: Enter
 Type of ssh key you would like to generate {dsa/rsa}: rsa
 Number of rsa key bits <1024-2048> [1024]: 2048

Configure the ntp server? [yes/no] [n]: y
 NTP server IPV4 address: mgmt_net_ntp1

Configure default interface layer [L3/L2] [L2]: Enter
Configure default switchport interface state {shut/noshut} [noshut]: shut
Configure CoPP system profile {strict/moderate/lenient/dense} [strict]: strict
```
e. In configuration-terminal mode, run the following commands on Cisco Nexus switch 2:

```bash
Abort Auto Provisioning and continue with normal setup? [yes/no] [n]: yes
Disabling POAP

---- System Admin Account Setup ----
Do you want to enforce secure password standard [yes/no] [y]: yes

Enter the password for "admin": <<net_switch_admin_password>>
Confirm the password for "admin": <<net_switch_admin_password>>

---- Basic System Configuration Dialog VDC: 1 ----

This setup utility will guide you through the basic configuration of the system. Setup configures only enough connectivity for management of the system.

Would you like to enter the basic configuration dialog [yes/no]: yes
Create another login account [yes/no] [n]: Enter
Configure read-only SNMP community string [yes/no] [n]: yes

Enter the switch name: <<net_switch2_hostname>>
Continue with Out-of-band (mgmt0) management configuration? [yes/no] [y]: Enter
Mgmt0 IPv4 address: <<net_switch2_mgmt_ip>>
Mgmt0 IPv4 netmask: <<mgmt_net_netmask>>
Configure the default gateway? [yes/no] [y]: Enter
IPv4 address of the default gateway: <<mgmt_net_gw>>

Configure advanced IP options? [yes/no] [n]: Enter
Enable the telnet service? [yes/no] [n]: Enter
Enable the ssh service? [yes/no] [y]: Enter
Type of ssh key you would like to generate (dsa/rsa): rsa
Number of rsa key bits <1024-2048> [1024]: 2048

Configure the ntp server? [yes/no] [n]: y
NTP server IPv4 address: mgmt_net_ntp1

Configure default interface layer [L3/L2] [L2]: Enter
Configure default switchport interface state [shut/noshut] [noshut]: shut
Configure CoPP system profile [strict/moderate/lenient/dense] [strict]: strict

feature lacp
feature vpc
feature lldp
exit
copy running-config startup-config
```

**NOTE**
Switch prompts are not displayed in the remaining steps of this configuration example.

---

**Task 2: Enable the license**

1. Log in and enable the license

   a. Log in to both switches with the user name admin and the password <<net_switch_admin_password>>.

   b. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

```bash
feature lacp
feature vpc
feature lldp
exit
copy running-config startup-config
```
Task 3: Configure NTP
1. Configure the local time and date, and enable NTP:
   a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```
 ntp server <<mgmt_net_ntp1>> prefer use-vrf management
 ntp source-interface mgmt 0
 clock protocol ntp vdc 1

 copy running-config startup-config
   ```

Task 4: Create the VLANs needed
1. Create the required VLANs and the interfaces needed:
   a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```
 vlan <<mgmt_net_vlan>>
 name MGMT-VLAN
 exit

 vlan <<iscsi_san_a_vlan>>
 name iSCSI-SAN-A-VLAN
 exit

 vlan <<iscsi_san_b_vlan>>
 name iSCSI-SAN-B-VLAN
 exit

 vlan <<vm_production_net_1_vlan>>
 name VM-Production-VLAN1
 exit

 vlan <<dead_net_vlan>>
 name Dead-Network for unused ports
 exit

 copy running-config startup-config
   ```
Task 5: Add individual port descriptions for troubleshooting

1. Add individual port descriptions for troubleshooting activity and verification:

   a. In configuration-terminal mode, run the following commands on Cisco Nexus switch 1:

   ```
 interface Ethernet 1/15
 description <<nimble1_system_name>>-CA-tg1a
 exit

 interface Ethernet 1/16
 description <<nimble1_system_name>>-CB-tg1a
 exit

 interface Ethernet 1/30
 description Switch1-PeerLink-Switch2-PeerLink-1/30
 exit

 interface Ethernet 1/31
 description Switch1-PeerLink-Switch2-PeerLink-1/31
 exit

 interface Ethernet 1/1
 description <<mgmt_server_1_hostname>>-Port1
 exit

 interface Ethernet 1/2
 description <<mgmt_server_1_hostname>>-iSCSI-Port1
 exit

 interface Ethernet 1/3
 description <<mgmt_server_2_hostname>>-Port1
 exit

 interface Ethernet 1/4
 description <<mgmt_server_2_hostname>>-iSCSI-Port1
 exit

 interface Ethernet 1/5
 description <<mgmt_server_1_hostname>>-ILO
 exit

 interface Ethernet 1/7
 description <<nimble_system_name>>-MGMT-CA-Port1
 exit

 interface Ethernet 1/8
 description <<nimble_system_name>>-MGMT-CB-Port1
 exit

 copy running-config startup-config
   ```
b. In configuration-terminal mode, run the following commands on Cisco Nexus switch 2:

```bash
interface Ethernet 1/15
description <<nimble1_system_name>>-CA-tg1b
exit

interface Ethernet 1/16
description <<nimble1_system_name>>-CB-tg1b
exit

interface Ethernet 1/30
description Switch1-PeerLink-Switch2-PeerLink-1/30
exit

interface Ethernet 1/31
description Switch1-PeerLink-Switch2-PeerLink-1/31
exit

interface Ethernet 1/1
description <<mgmt_server_1_hostname>>-Port2
exit

interface Ethernet 1/2
description <<mgmt_server_1_hostname>>-iSCSI-Port2
exit

interface Ethernet 1/3
description <<mgmt_server_2_hostname>>-Port2
exit

interface Ethernet 1/4
description <<mgmt_server_2_hostname>>-iSCSI-Port2
exit
interface Ethernet 1/5
description <<mgmt_server_2_hostname>>-ILO
exit
interface Ethernet 1/7
description <<nimble_system_name>>-MGMT-CA-Port2
exit
interface Ethernet 1/8
description <<nimble_system_name>>-MGMT-CB-Port2
exit

copy running-config startup-config
```
**Task 6: Assign the the VLANs and configure jumbo frames and flow control**

Assign individual VLANs to different ports and configure jumbo frames and flow control.

1. Configure the management and VM Network VLANs for each HPE ProLiant server in your environment:
   a. In configuration-mode, run the following commands on both switches, adjusting the ports as needed:

   ```
 interface Ethernet 1/1
 switchport mode trunk
 switchport trunk allowed vlan <<mgmt_net_vlan>> <<vm_production_net_1_vlan>>
 switchport trunk native vlan <<mgmt_net_vlan>>
 exit

 interface Ethernet 1/3
 switchport mode trunk
 switchport trunk allowed vlan <<mgmt_net_vlan>> <<vm_production_net_1_vlan>>
 switchport trunk native vlan <<mgmt_net_vlan>>
 exit

 copy running-config startup-config
   ```

2. Configure management VLANs for the HPE Nimble Storage management interface for each management port on your HPE Nimble Storage array:
   a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```
 interface Ethernet 1/7
 switchport access vlan <<mgmt_net_vlan>>
 exit

 interface Ethernet 1/8
 switchport access vlan <<mgmt_net_vlan>>
 exit
   ```

3. Configure iSCSI VLANs, flow control, and jumbo frames for each HPE ProLiant server in your environment:
   a. In configuration-terminal mode, run the following commands on Cisco Nexus switch 1:

   ```
 interface Ethernet 1/2
 switchport access vlan <<iscsi_san_a_vlan>>
 flowcontrol receive on
 flowcontrol send on
 mtu 9216
 no shutdown

 interface Ethernet 1/4
 switchport access vlan <<iscsi_san_a_vlan>>
 flowcontrol receive on
 flowcontrol send on
 mtu 9216
 no shutdown
 exit

 copy running-config startup-config
   ```
b. In configuration-terminal mode, run the following commands on Cisco Nexus switch 2:

```bash
interface Ethernet 1/2
switchport access vlan <<iscsi_san_b_vlan>>
flowcontrol receive on
flowcontrol send on
mtu 9216
no shutdown
exit

interface Ethernet 1/4
switchport access vlan <<iscsi_san_b_vlan>>
flowcontrol receive on
flowcontrol send on
mtu 9216
no shutdown
exit

copy running-config startup-config
```

4. Configure iSCSI VLANs for each port on your HPE Nimble Storage array:

a. In configuration-terminal mode, run the following commands on Cisco Nexus switch 1:

```bash
interface Ethernet 1/15
switchport access vlan <<iscsi_san_a_vlan>>
flowcontrol receive on
flowcontrol send on
mtu 9216
no shutdown
exit

interface Ethernet 1/16
switchport access vlan <<iscsi_san_a_vlan>>
flowcontrol receive on
flowcontrol send on
mtu 9216
no shutdown
exit

copy running-config startup-config
```

b. In configuration-terminal mode, run the following commands on Cisco Nexus switch 2:

```bash
interface Ethernet 1/15
switchport access vlan <<iscsi_san_b_vlan>>
flowcontrol receive on
flowcontrol send on
mtu 9216
no shutdown
exit

interface Ethernet 1/16
switchport access vlan <<iscsi_san_b_vlan>>
flowcontrol receive on
flowcontrol send on
mtu 9216
no shutdown
exit

copy running-config startup-config
```
Task 7: Create port-channels
1. Create the port-channels needed for vPC:
   a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

   ```
 interface Ethernet 1/30-31
 channel-group 100 mode active
 no shutdown
 exit

 interface port-channel 100
 description vPC peer-link
 switchport mode trunk
 switchport trunk allowed vlan <<mgmt_net_vlan>>, <<vm_production_net_1_vlan>>
 spanning-tree port type network
 exit

 copy running-config startup-config
   ```

Task 8: Configure virtual port-channels
1. Set and configure the domain ID and the vPC:
   a. In configuration-terminal mode, run the following commands on Cisco Nexus switch 1:

   ```
 vpc domain <<net_switch_domain_id>>
 role priority 10
 peer-keepalive destination <<net_switch2_mgmt_ip>> source <<net_switch1_mgmt_ip>>
 delay restore 150
 auto-recovery
 exit

 interface port-channel 100
 vpc peer-link
 exit

 copy running-config startup-config
   ```

   b. In configuration-terminal mode, run the following commands on Cisco Nexus switch 2:

   ```
 vpc domain <<net_switch_domain_id>>
 role priority 10
 peer-keepalive destination <<net_switch1_mgmt_ip>> source <<net_switch2_mgmt_ip>>
 delay restore 150
 auto-recovery
 exit

 interface port-channel 100
 vpc peer-link
 exit

 copy running-config startup-config
   ```
Task 9: Confirm that the vPC is active
1. Run the `show vpc` command on both switches to verify that the vPC peer link is active.
2. Review the following output from `<<net_switch1_hostname>>`. The key sections to notice are highlighted in yellow.

```
cisco# show vpc
Legend:
 (*) - local vPC is down, forwarding via vPC peer-link

vPC domain id : 1
Peer status : peer adjacency formed ok
vPC keep-alive status : peer is alive
Configuration consistency status : success
Per-vlan consistency status : success
Type-2 inconsistency reason : Consistency Check Not Performed
vPC role : primary
Number of vPCs configured : 3
Peer Gateway : Disabled
Dual-active excluded VLANs : -
Graceful Consistency Check : Enabled
Auto-recovery status : Enabled, timer is off.(timeout = 240s)
Delay-restore status : Timer is off.(timeout = 150s)
Delay-restore SVI status : Timer is off.(timeout = 10s)

vPC Peer-link status
--
id Port Status Active vlans

1 Po100 up 210
```

Task 10: Secure the remaining interfaces
1. Secure the rest of the switch by shutting down the unused ports and put them into your `<<dead_net_vlan>>`:
   a. In configuration-terminal mode, run the following commands on both switches, adjusting the ports as needed:

```
interface Ethernet 1/9-14
switchport access vlan <<dead_net_vlan>>
exit
```

Task 11: Uplink into the existing network infrastructure
See the Cisco documentation to learn more about how to uplink the Cisco Nexus switches into your network infrastructure.
Resources

HPE Nimble Storage Validated Configuration Matrix
https://infosight.hpe.com/org/urn%3Aanime%3%A0013400001QfUyiAAF/resources/nimble/validated-configuration-matrix

HPE Support Site for HPE ProLiant DL360 Gen10 Servers

HPE Support Site for HPE ProLiant DL380 Gen10 Servers

HPE Integrated Lights Out (iLO 4) – Configuring the NIC Settings
support.hpe.com/hpsc/doc/public/display?docId=emr_na-a00045457en_us&docLocale=en_US

HPE Support Site for HPE FlexFabric 5700 Switch Series
support.hpe.com/hpsc/doc/public/display?docId=emr_na-c04406873

HPE Nimble Storage documentation page of the HPE InfoSight portal (login required)
infosight.hpe.com/org/urn%3Aanime%3%A0013400001QfUyiAAF/resources/nimble/docs

Hardware Guide – HFxx

Hardware Guide - AFxx

VMware API and SDK documentation
vmware.com/support/pubs/sdk_pubs.html

VMware Integration Guide
https://infosight.hpe.com/org/urn%3Aanime%3%A0013400001QfUyiAAF/resources/nimble/docs?Document+Type=Integration+Guide

HPE Nimble Storage Deployment Considerations for VMware vSphere 6

HPE iLO RESTful API

Managing Hewlett Packard Enterprise Servers Using the RESTful API
support.hpe.com/hpsc/doc/public/display?docId=c04423967

NimbleOS GUI or CLI Administration Guide
https://infosight.hpe.com/org/urn%3Aanime%3%A0013400001QfUyiAAF/resources/nimble/docs?Document+Type=Administration+Guide